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How do topology and geometry of a tubular network affect the spread of particles within fluid
flows? We investigate patterns of effective dispersion in the hierarchical, biological transport net-
work formed by Physarum polycephalum. We demonstrate that a change in topology – pruning
in the foraging state – causes a large increase in effective dispersion throughout the network. By
comparison, changes in the hierarchy of tube radii result in smaller and more localized differences.
Pruned networks capitalize on Taylor dispersion to increase the dispersion capability.

PACS numbers: 87.18.Vf, 87.16.A-, 87.16.Wd

Transport due to fluid flowing through tubular net-
works is of great interest because it has technologi-
cal applications to biomimetic microfluidic devices [1–3],
foams [4], fuel cells [5] and other filtration systems [6],
and lies at the heart of extended organisms that rely on
transport networks to function: animal vasculature [7, 8],
fungal mycelia [9] and plant tubes [10–12]. A big chal-
lenge regarding transport networks is to understand how
network architecture changes the efficiency of particle
spread throughout a network. While it is experimentally
tedious to map particle transport in a network, predicting
the spread of particles is also a theoretical challenge [13–
20]. Attempts to understand how network topology and
geometry affect the transport of particles are scarce [17].
Alternatively, we can study the dynamic changes of tubu-
lar network architecture in living beings to investigate
the role of architecture. Organisms spontaneously reor-
ganize their transport networks, including tube pruning
[21–24]. Examples are vessel development in zebrafish
brain development [21], or growth of a large foraging fun-
gal body [22]. Here, we study the slime mold Physarum
polycephalum who emerged as an inspiring and yet puz-
zling model for ‘intelligent’ living transport networks.

P. polycephalum like foraging fungi, actively adapts its
network to environmental cues [25–29]. Networks con-
necting multiple food sources are a good compromise be-
tween efficiency, reliability and cost, comparable to hu-
man transport networks [29]. Fluid cytoplasm enclosed
in the tubular network exhibits non-stationary shuttle
flows [30–32] driven by a peristaltic wave of contrac-
tions spanning the entire organism [33]. Investigations of
transport in these networks are so far limited to estimates
based on the minimal distance between tubes [29, 34, 35].
We tracked a well reticulated individual trimmed from a
larger network (Fig. 1). After several hours, the thin
central tubes were abandoned in favor of a few large cen-
tral tubes and globular structures at the periphery. How
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FIG. 1. Bright-field image of a P. polycephalum individual
cut from a larger network (left) and the same individual 100
contraction periods later (right).

does this radical change of topology affect the transport
capabilities of the individual? What role do hierarchical
tube radii play?

We present a method to efficiently map the effective
dispersion of particles from any initiation site throughout
any network with non-stationary but periodic fluid flows.
We use this method to study the change in dispersion pat-
terns as an individual adjusts its morphology after trim-
ming (Fig. 1). We find that the pruned state presents,
on average, higher transport capabilities than the initial
state. Emergent central tubes concentrate flow, enabling
higher flow velocities across the entire network. Thus
the organism capitalizes on Taylor dispersion to increase
particle spread. Finally, we study the influence of hier-
archical tube radii by comparing hierarchical unpruned
and pruned states to their theoretical counterparts with
equal tube radii. We find that radial hierarchies influ-
ence dispersion patterns on local scales, but changes in
average transport capabilities require pruning.

To prepare P. polycephalum networks, plasmodia
from Carolina Biological Supplies were grown on 1.5%
(wt/vol) agar without nutrients and fed daily with auto-
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claved oat flakes (Quaker Oats Company). Eight to 24 h
before imaging, a newly colonized oat flake was trans-
ferred to a fresh agar dish. Before imaging, slime mold
networks were trimmed to remove growing fans and oat
flakes. Bright-field microscopy images were obtained us-
ing a Zeiss Axio Zoom V16 stereomicroscope.

Network architectures were extracted with a Matlab
program and discretized into M nodes connected by N
tubes of length ` = 10px and measured average radius
a0,ij (ij designs the tube connecting vertices i and j).
Tubes of P. polycephalum undergo a peristaltic wave of
contractions. Tube radii aij(t) oscillate about a0,ij with
contraction period T , inducing fluid flow uij throughout
the network. Given the network architecture and the
periodic contractions, the flow throughout the network
is computed by use of Kirchhoff’s law at every node, see
Supplementary Information Sect. 1 for details.

To describe how quickly particles disperse from any
given tube throughout a network, we want to quantify
the growth rate of the area of a cloud of dispersing par-
ticles. After a short transient, the cloud disperses, on
average, in a diffusive way, e.g. the radius squared of
the cloud is proportional to time. We wish to evaluate
that proportionality constant, that we call effective dis-
persion. For that we develop in the following a numerical
method, the Dispersing Cloud, corresponding to a sim-
plified resolution of the particle dynamics in the network.
The method is most efficient to characterize the flow of
particles in large networks.

The dispersion of particles due to fluid flow in a tubular
network is, in general, a multidimensional problem. In
the case of P. polycephalum, the tubes are long enough
to smooth out variations in the concentration along the
cross-section ` � ua2

0/κ. The cross-sectionally averaged
concentration of particles c(z, t) in each single tube is,
thus, efficiently described by Taylor’s dispersion [36, 37]:
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where κ = 10−10m2/s is the molecular diffusivity of par-
ticles. Fig. 2a) shows the evolution of the area of a cloud
of dispersing particles starting from a single tube as de-
scribed by Eq. 1. Solving Eq. 1 for all starting points
in the trial network considered (inset of Fig. 2a) takes
several days and is thus unreasonable for large networks.

To capture the trend of these dispersion dynamics with
time in a more succinct way, we first aim at deriving
the local dispersion properties in the network. After
that step, calculating the long time dynamics will require
only a subtle averaging of these local dispersion proper-
ties over time. Thinking of the dispersion dynamics as
a random walk of particles, we write the local disper-
sion, representing the instantaneous diffusion coefficient
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FIG. 2. a) Change in the area of a cloud of dispersing par-
ticles, according to a full resolution of the dispersing cloud
method, for the starting point circled in blue, see network in-
set. b) Particles spread in a random walk defined by transition
probabilities and times, allowing definition of local dispersion
coefficients. c) Particles effectively spread as a Gaussian cloud
of radius ri from site i, with a rate averaged over the local
dispersions. This method yields the effective dispersion at
long time scales in d).

at node i, as:

Di =
∑

k∈nn(i)

pik
`2

2tik
(2)

where nn(i) are the nearest node neighbors of i, pik is
the average probability of entering tube ik, and tik is
an average transition time in that tube, see Fig. 2b,
and c. The transition probability and time are deter-
mined by the flow dynamics, in the spirit of [14]. We
introduce time independent quantities by averaging vari-
ables over the period of the oscillations T . For a particle
at node i, the probability of entering one of the connected
tubes nn(i) is proportional to the flux at the entry of
that tube. We thus define pij = qrms,ij/

∑
k∈nn(i) qrms,ki,

where qrms,ij is the time averaged root mean square flux
in tube ij. The transition time is the minimum of either
diffusion dominated or advection dominated transport:
tij = min(tdiff,ij , tadv,ij). We take the effective diffusivity
in Eq. 1 to determine the diffusion dominated transition
time to be:

tdiff,ij =
`2

2

〈
1

κ+
u2
ija

2
ij

48κ

〉
`,T

, (3)

where we average along the entire tube of length ` and
over the period T . Averaging over the period is justified
because the period is small compared to the time scales
we are interested in. To compute the time it takes a
particle to transverse a tube by advection we in general
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have to solve for the trajectory of the particle at any
given start time t0 ∈ T ,

dz(t)

dt
= uij(z, t), z(t0) = 0, z(t0 + tadv,ij(t0)) = `. (4)

For stationary flows the advection time is simply tadv,ij =
uij/`ij . For the non-stationary flows arising from the
peristaltic wave in P. polycephalum we analytically solve
Eq. 4 by approximating the oscillatory flow velocities
with uij ≈ u0,ij cos(ω(t − t0)), where u2

0,ij = 2
〈
u2
ij

〉
T

.
The diffusive time scale defined by Eq. 3 acts as a cutoff
for tubes in which the fluid velocity is insufficient to allow
a particle to traverse the tube before the flow reverses,
e.g. when Eq. 4 has no solution.

Based on these local dispersion properties, we now de-
fine laws for the evolution of the area r2

i of a cloud of
particles spreading from an initial node i, and define the
effective dispersion after the transient initial phase as

Di = lim
t�T

r2
i (t)

4t
, (5)

where the limit indicates times that are large, compared
to the initial transition time. At this point effective dis-
persion saturates; in most of our individuals saturation
is reached after a few periods. Effective dispersion thus
describes the growth of the radius of a cloud of particles
from initiation node i with

√
4Dit to the boundary of the

network. We assume that the probability of finding a
particle at an Euclidian distance d from node i is propor-

tional to a circular Gaussian:
(
2πr2

i

)−1/2
exp(−2d2/2r2

i ),
with r2

i = 4Dit [38]. Over time the cloud reaches nodes
that have different local dispersion properties, and thus
r2
i grows with the average over the local dispersion coef-

ficients within the cloud, weighted by the probability of
finding particles at that point:

δr2
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where dim denotes the Euclidean distance between nodes

and K =
∑
m 6=i

(
2πr2

i

)−1/2
exp(−d

2
im

2r2i
) is a normaliza-

tion factor, see Fig. 2c and d. In flows with a net drift
the Gaussian center would move with that drift veloc-
ity. Effective dispersion takes the detailed geometry of
the network into account. As depicted in Fig. 2d), a
node with low local dispersion coefficient Di, but close
to a node with a high Dj has a high effective dispersion
Di. Iteratively solving for the variance of the dispersing
cloud of particles still reproduces the solution for Tay-
lor dispersion on a network very well, see Fig. 2a) (and
Supplementary Information Fig. S2). The computation
of the dispersing cloud with the method of Eq. 6 for any
starting point over the entire trial network of Fig. 2a)
only takes a few minutes.

The concept of effective dispersion allows us to effi-
ciently parse how quickly particles will spread from any

b) ×10-10

1

3

5

7

-6

-5

-4

a) 100 T0 T

(10-10 m2/s)

(mm/s)
0.1

0.01

0.001

7

5

3

1

FIG. 3. a) Maps of the root mean square flow velocity, and
b) effective dispersion, for the initial network (left) and the
same individual 100 contraction periods later (right).

location within a large transport network. We use this
method on P. polycephalum individuals (Fig. 1) to show
that pruning - a change in the topology of the network -
significantly enhances global network transport capabili-
ties (Fig. 3). In an unpruned network, the flow pattern
is high along the direction of the peristaltic wave (top
left to bottom right) growing to its highest values at the
network’s center. In the pruned network, the flow is high
in all central tubes. The mass accumulated in all of the
many peripheral tubes has to pass through only a few
central tubes, and so the velocity in these tubes is higher
than in the unpruned network. As expected from Tay-
lor dispersion Eq. 1, tubes with high flux enable parti-
cles to spread effectively. On average over the network -
weighted by the volume of the tubes -, effective dispersion
for the pruned case is 36% higher than in the unpruned
case, being notably higher at the center. This result is
qualitatively conserved among independent experiments
(see Supplementary Information Sect. 3). Pruning cap-
italizes on Taylor dispersion to enhance transport. Al-
though flow maps are only slightly different, effective dis-
persion maps reveal differences. The large central tubes
of the unpruned and pruned networks have comparable
flow velocities and sizes, yet the proximity of numerous
small tubes in the unpruned case decreases effective dis-
persion by about a factor of two. In the pruned network,
particles do not get lost in the more slowly propagating,
smaller central tubes found in the unpruned network, and
can be efficiently flushed further away.

The topological changes to a network imposed by prun-
ing appear to be the limiting case of geometrical changes
to the hierarchy of tube radii. We demonstrate now that
geometric changes in a network can impose heteroge-
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FIG. 4. Average effective dispersion as a function of distance
to the center for unpruned (a) and pruned (b) states (shaded
areas mark standard deviations). The base dashed line repre-
sents the molecular diffusivity κ = 10−10m2/s. Note the dif-
ference in scales. Blue and black curves represent data from
hierarchical (ii) and non-hierarchical cases (i), respectively.
Insets are colored to show effective dispersion.

neous transport capabilities, but large changes in overall
effective dispersion require pruning. To assess the impact
of a hierarchical organization of tubes we compare the
dispersion properties of pruned and unpruned states (ii)
to a reference, non-hierarchical network with equal radii
but same overall mass (i), see Fig. 4. In an unpruned
network, (a), average effective dispersion is about 11%
higher when radii have no hierarchy, and in a pruned
network, (b), the difference is less than 1%. These re-
sults also translate qualitatively to other individuals (see
Supplementary Information Sect. 3). Maps of effective
dispersion in the unpruned network reveal that a hierar-
chical organization localizes regions of high transport ca-
pabilities along and near larger central tubes, rather than
homogeneous patterns of dispersion, as found in the ref-
erence non-hierarchical network. In the pruned network,
a hierarchical organization enhances the dispersal proper-
ties of the center, while the spreading efficiency in periph-
eral tubes is barely impacted. Yet, the measured change
in effective dispersion may explain previously observed
changes in mixing rate with network geometry [39].

In summary we investigated the impact of topology
and geometry on particle flow within a live, tubular net-
work by observing P. polycephalum. By introducing the

concept of effective dispersion, we provide an efficient
method to map how quickly particles disperse through-
out a transport network from any initiation site. Ef-
fective dispersion measures the growth rate of an area
of dispersing particles, and can be used for any station-
ary or non-stationary but periodic flow. Regarding the
analysis of transport network properties, effective disper-
sion gives a faithful yet efficient mapping of flow driven
transport dynamics that are only to certain extent cap-
tured by measures like “betweenness” [40, 41] and mean
first passage time measures [42]. We employed the ef-
fective dispersion method to compare an initially well
reticulated network formed by P. polycephalum with its
evolved state one hundred contraction periods later. We
observe that an alteration of network topology, massive
pruning, leads to a significant increase in global effective
dispersion. The remaining large tubes serve as bottle-
necks for flows. Capitalizing on Taylor dispersion, parti-
cle diffusivity is strongly enhanced not only at the center
but throughout the network. By comparison, changes
in the geometry of a network caused by a hierarchical
organization of tube radii, while inducing specific zones
of high transport capabilities, overall have a smaller im-
pact on effective dispersion than pruning. By observing
P. polycephalum we learned that pruning increases trans-
port properties tremendously. It is fascinating to specu-
late that pruning in other biological systems, for exam-
ple during vessel development in zebrafish brain develop-
ment [21], or during growth of a large fungal body [22],
serve a similar objective of enhanced effective dispersion.
Pruning itself might be triggered by the concentration
of specific dispersing particles. Pruning is also tightly
governed by the initial pattern of hierarchy, and the dy-
namic entanglement between hierarchy and pruning re-
mains unsolved. Investigating the mechanisms allowing
for pruning would be highly instructive in the process of
understanding the overall organization of organisms.
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