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Recent experiments reporting unexpectedly large spin Hall effect (SHE) in graphene decorated
with adatoms have raised a fierce controversy. We apply numerically exact Kubo and Landauer-
Büttiker formulas to realistic models of gold-decorated disordered graphene (including adatom clus-
tering) to obtain the spin Hall conductivity and spin Hall angle, as well as the nonlocal resistance as a
quantity accessible to experiments. Large spin Hall angles of ∼ 0.1 are obtained at zero-temperature,
but their dependence on adatom clustering differs from the predictions of semiclassical transport
theories. Furthermore, we find multiple background contributions to the nonlocal resistance, some
of which are unrelated to SHE or any other spin-dependent origin, as well as a strong suppression of
SHE at room temperature. This motivates us to design a multiterminal graphene geometry which
suppresses these background contributions and could, therefore, quantify the upper limit for spin
current generation in two-dimensional materials.

PACS numbers: 72.80.Vp, 73.63.-b, 73.22.Pr, 72.15.Lh, 61.48.Gh

Introduction.—Over the past decade, the spin Hall ef-
fect (SHE) has evolved rapidly from an obscure theoret-
ical prediction to a major resource for spintronics [1, 2].
In the direct SHE, injection of conventional unpolarized
charge current into a material with extrinsic (due to im-
purities) or intrinsic (due to band structure) spin-orbit
coupling (SOC) generates pure spin current in the di-
rection transverse to charge current. Although SHE was
first observed only a decade ago [3], it is already ubiq-
uitous within spintronics as standard pure spin-current
generator and detector [1, 2]. The spin Hall angle θsH,
as the ratio of generated spin Hall current and injected
charge current, is the figure of merit for charge-to-spin
conversion efficiency. To date, measured values of θsH
range from ∼ 10−4 in semiconductors to ∼ 0.1 in metals
like β-Ta and β-W [2].

Concurrently, the discovery of graphene [4] has ig-
nited a considerable amount of activity, owing to its
unique electronic properties and versatility for practical
applications, including possible applications in spintron-
ics [5]. The intrinsically small SOC and hyperfine in-
teractions [6] in graphene lead to spin relaxation lengths
reaching several tens of micrometers at room tempera-
ture [7–10], but simultaneously making pristine graphene
inactive for SHE [5]. On the other hand, recent nonlo-
cal transport measurements on graphene decorated with
heavy adatoms like copper, gold and silver have extracted
exceptionally large values for θsH ∼ 0.2 [11]. These re-
ports follow prior experiments on weakly hydrogenated

graphene, which showed surprisingly similar results [12]
despite using light adatoms like hydrogen. The large
values of θsH observed in both types of experiments
have been supported by semiclassical transport theo-
ries [13, 14].

The very recent experiments [15, 16] aiming to repro-
duce these results have indeed confirmed large nonlocal
transport signal near the charge neutral point (CNP)
of graphene which, however, appears to be disconnected
from SHE physics or any other spin-related mechanism.
For example, Wang and coworkers [15] reported that Au-
or Ir-decorated graphene exhibits no signature of SHE
and relate the large nonlocal resistanceRNL to the forma-
tion of neutral Hall currents. Kaverzin and van Wees [16]
found large RNL in hydrogenated graphene which was in-
sensitive to an applied in-plane magnetic field. These
authors [16] exclude valley Hall effect and long-range
chargeless valley currents [17] as mediating such RNL,
given the absence of both its temperature dependence
and broken inversion symmetry, and conclude that a non-
trivial and unknown phenomenon is at play.

The presently available theories for θsH [13] or RNL [18]
offer little guidance on how to resolve these controver-
sies since they utilize semiclassical approaches to charge
transport and spin relaxation which are known to break
down [19, 20] near CNP. Moreover, while Kubo for-
mula [21] offers fully quantum-mechanical treatment that
can in principle capture all relevant effects, its standard
analytic evaluation neglects [22] terms (such as those
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corresponding to skew-scattering from pairs of closely
spaced impurities [23]) in the perturbative expansion in
disorder strength which can become crucial for clusters
of adatoms. Finally, the impact of unavoidable adatom
clustering [24] on θsH is an open and important question,
since adatom segregation has been shown to strongly af-
fect spin transport properties [25, 26].
In this Letter, the spin Hall angle in graphene

decorated with Au-adatoms is computed by using
two different numerically exact quantum transport
methodologies—the real-space Kubo formula and the
multiterminal Landauer-Büttiker (LB) formula [27]. At
zero temperature, both methods yield θsH ∼ 0.1–0.3 for
the same Au-adatom concentration ni. However, those
values require rather large ni & 10% and drop sig-
nificantly when temperature and adatom clustering are
taken into account.
Furthermore, the LB formula applied to six-terminal

graphene geometry in Fig. 1 reveals large background
contributions to RNL even when SOC is artificially

turned off. They are, therefore, unrelated to SHE
physics, and are also unrelated to trivial Ohmic contribu-
tion due to classical current paths [16, 18]. We show that
their sign [28, 29] and scaling with the channel length L
makes it possible to understand their origin. This allows
us to propose a novel six-terminal graphene setup—see
Fig. S7 in the Supplemental Material (SM) [30]—where
such background contributions can be eliminated in order
to study purely SHE-driven RNL signal.
Hamiltonian model for Au-decorated graphene.—When

an adatom like gold, thallium or indium is absorbed onto
graphene surface, it resides in the center of graphene
carbon rings where it can enhance the intrinsic SOC or
induce Rashba SOC due to the broken inversion sym-
metry [34]. The minimal (with single π orbital per
site) effective tight-binding model for graphene with such
adatoms is given by

H =− γ0
∑

〈ij〉

c†i cj +
2i√
3
VI

∑

〈〈ij〉〉∈R

c†i~s · (~dkj × ~dik)cj

+ iVR

∑

〈ij〉∈R

c†i~z · (~s× ~dij)cj − µ
∑

i∈R

c†ici. (1)

The first term is the nearest neighbor hopping term with
γ0 = 2.7 eV. The second term is the next-nearest neigh-
bor hopping term which accounts for the local intrin-
sic SOC enhancement by adatoms residing on the set of
hexagons R. The unit vector ~dkj points from atom j to
atom k, with atom k standing in between i and j, and
~s = (sx, sy, sz) is the vector of the Pauli matrices. The
third term is the nearest neighbor hopping term describ-
ing the Rashba SOC which explicitly violates ~z → −~z
symmetry. The last term is the on-site potential µ on
carbon atoms in the hexagons hosting adatoms, which
simulates charge modulation induced locally around the
adatom [34]. The Hamiltonian in Eq. (1) has been em-
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FIG. 1. (Color online) Schematic view of a six-terminal
graphene employed to compute the nonlocal resistance RNL =
VNL/I1 and the spin Hall angle θsH = ISz

5
/I1. For nonlo-

cal transport, the injected transverse charge current between
leads 1 and 2 generates the longitudinal spin current ISz

5
in

lead 5, as well as the mediative spin current ISz

M
whose conver-

sion into the voltage drop VNL = V3−V4 between leads 3 and
4 generates RNL. The dashed region illustrates the sample
of size 400 nm × 400 nm, with periodic boundary conditions,
used for calculations of Kubo conductivities. Zoom shows
carbon atoms (black circles) and Au adatoms (yellow circles).

ployed to study spin dynamics in graphene decorated
with Au-adatoms [19], and here we use the same param-
eters VI = 0.007γ0, VR = 0.0165γ0 and µ = 0.1γ0 fitted
to first-principles calculations [34].

Figure 1 shows the geometry used for the calculations
of bulk Kubo conductivities and multiterminal charge
and spin currents. The calculations of θsH with the
Kubo formula are performed using a graphene flake of
the size 400 nm × 400 nm enclosed in dashed square
with periodic boundary conditions. For LB calcula-
tions we consider full six-terminal geometry in Fig. 1,
where the central region with edges of armchair type,
width W = 50 nm (composed of 3n + 2 dimer lines, so
that its electronic structure resembles that of large-area
graphene [20]) and variable distance L between the pair
of leads 1 and 2 and the pair of leads 3 and 4 is attached
to two armchair longitudinal leads and four transverse
leads with zigzag edges and of width W = 50 nm. Akin
to experimental procedure [11, 12, 15, 16, 35], injecting
unpolarized charge current I1 into this measurement ge-
ometry induces RNL = (V3 − V4)/I1 and θsH = ISz

5 /I1.

Real-space Kubo formula for spin Hall conductivity.—
The Kubo formula for spin Hall conductivity σsH reads [2]

σsH =
e~

Ω

∑

m,n

f(Em)− f(En)

Em − En

Im [〈m |Jz
x |n〉 〈n |vy|m〉]

Em − En + iη
,

(2)
where vx is the velocity operator and Jz

x = ~

4
{sz, vx} is

the spin current operator. The numerical evaluation of
Eq. (2) is usually made by finding the whole spectrum
Em and the full set of eigenvectors {|m〉} of H, which
is computationally expensive task. Here we develop al-
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ternative and efficient real-space formalism by re-writing
σsH as

σsH =
e~

Ω

∫

dxdy
f(x)− f(y)

(x − y)2 + η2
j(x, y), (3)

with j(x, y) =
∑

m,n Im [〈m |Jz
x |n〉 〈n |vy|m〉]δ(x −

Em)δ(y − En). This can be calculated by rescal-
ing H, x, y and E into the interval [−1, 1] (the cor-
responding variables are h, x̂, ŷ and ǫ, respectively)
and by expanding j(x, y) into Chebyshev polynomials

Tm(x̂) as j(x, y) =
∑M

m,n[4µmngmgnTm(x̂)Tn(ŷ)]/[(1 +

δm,0)(1 + δn,0)π
2
√

(1− x̂2)(1− ŷ2)], where µmn =
Im {Tr [Jz

xTn(h)vyTm(h)]}/∆E2 and ∆E is half the
bandwidth [36]. Here gm is the filter, Jackson kernel,
that minimizes the Gibbs oscillations arising in truncat-
ing the series to finite order M [36]. The trace in µmn is
computed by averaging [37] over a small number r ≪ N
of random phase vectors |ϕ〉, with N being the num-
ber of carbon atoms considered in the sample. Hereafter
M = 1500 (= 6000) for σsH (σxx), r = 1 andN = 4×106.
Similar methods have been developed for the longitudinal
conductivity σxx [37], Hall conductivity σxy [38, 39] and
spin Hall conductivity σsH [40]. The method is validated
by comparing our numerically evaluated σsH with ana-
lytic results [41] for clean graphene with homogeneous
Rashba or intrinsic SOC [30].
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FIG. 2. (Color online): Spin Hall σsH (main frame) and lon-
gitudinal σxx (insets) conductivities for the two cases of ni =
15% Au-adatom distributions: (a) scattered and (b) clus-
tered, where Au islands have varying radius ∈ [1, 3] nm. In
both cases the effect of the presence (red lines, VI = 0.007γ0)
or absence (black lines, VI = 0) of the enhanced intrinsic
SOC within the hexagons hosting adatoms is also shown. All
results are averaged over 400 disorder configurations.

Spin Hall angle for different adatom distributions.—
Figure 2 shows σsH for ni = 15% of Au adatoms dis-
tributed in scattered [Fig. 2(a)] or clustered fashion [Fig.
2(b)], where clusters are randomly distributed islands of
radius ∈ [1, 3] nm. Although the random distribution of
Au adatoms and the Rashba SOC associated with them

induce scattering [µ = 0.1γ0 in Eq. (1)], the dependence
of σsH on the Fermi energy EF in the absence of intrin-
sic SOC is reminiscent of a step behavior obtained for a
homogeneous Rashba SOC [30], with σsH ≃ ±e/4π near
CNP. Adding a small intrinsic SOC, VI = 0.007γ0 ≪ VR,
slightly changes the absolute value of σsH but preserves
the step behavior. In contrast, the clustered distribution
of Au adatoms suppresses the step behavior and smooths
out the shape of σsH close to CNP. The effect of intrinsic
SOC is more pronounced for the clustered distribution
with a more significant enhancement of σsH on both elec-
tron and hole side.

FIG. 3. (Color online) Spin Hall angle θsH = σsH/σxx corre-
sponding to Fig. 2 for scattered (black) and clustered (red)
distributions of Au adatoms, which are illustrated in the in-
sets.

The spin Hall angle θsH = σsH/σxx requires additional
calculation of the longitudinal conductivity σxx, which is
performed using a real-space Kubo formula [30]. Figure 2
(insets) shows σxx for both cases. Comparable values of
σxx are obtained at CNP, but for the scattered case σxx

increases with energy faster than for the clustered case.
Figure 3 shows θsH for ni = 15% of Au adatoms, which
are distributed homogeneously (black lines) or in clus-
ters (red line). Remarkably, the values of θsH shown in
Fig. 3 are very large ∼ 0.1 close to CNP, which is similar
to experimentally reported values [11]. At the CNP, a
threefold decrease in θsH is obtained when adatoms are
clustered into islands with small radius. This conclu-
sion seems to differ from the semiclassical transport pre-
dictions where θsH increases with the radius of adatom
clusters [13], although a strict comparison would require
to treat a system consisting of identical islands. At
higher energies, we observe a sizable θsH for clustered
adatoms, which contrasts with vanishingly small values
for the scattered geometry. We finally extrapolate that
for ni =2–3% (as estimated in experiments [11]), θsH
should range between 0.01–0.1 (see SM [30]). We stress,
however, that our calculations represent an upper limit
for experimental situations. There, the increase of the
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FIG. 4. (Color online) (a) Nonlocal resistances for six-
terminal graphene in Fig. 1 with ni = 15% of scattered Au
adatoms, fixed channel width W = 50 nm and several chan-
nel lengths: L = 10 nm (main frame); L = 100 nm (left
inset); and L = 300 nm (right inset). Dotted lines plot
RNL when all SOC terms in Eq. (1) are switched off (SOC
≡ 0 ⇔ VI = VR = 0). (b) Spin Hall angle, obtained from
LB formula calculations, for the same concentration of Au
adatoms which are scattered (main frame) or clustered (in-
set). All curves are averaged over 10 disorder configurations.

cluster size and the finite temperature can significantly
decrease θsH below 0.01 [30].

It is also instructive to compare the results in Fig. 2
to the case of heavier adatoms like thallium (Tl), which
locally and substantially enhance the intrinsic SOC while
generating negligible Rashba SOC [34]. A crossover
from quantum SHE to conventional SHE has been pre-
dicted [26] when the distribution of Tl adatoms is
changed from scattered to clustered. Figure S2 in the
SM [30] shows that SHE due to clustered Tl adatoms
is characterized by larger θsH than in the case of either
scattered or clustered Au adatoms.

Nonlocal resistance and spin Hall angle in multitermi-

nal graphene.—In the SHE experiments [11, 12], multi-
terminal graphene devices are employed to measure RNL,
as illustrated in Fig. 1. In such a circuit, a charge current
I1 injected from lead 1 towards lead 2 generates the non-
local resistance RNL = (V3 − V4)/I1 at the Fermi energy
EF sufficiently close to CNP. The appearance of nonzero
RNL, due to a SHE-driven mechanism, is explained by
charge current I1 inducing mediative spin current ISz

M

in the first crossbar in Fig. 1 flowing in the direction
5 → 6, which is subsequently converted into the nonlo-
cal voltage VNL = V3 − V4 by the inverse SHE in the
second crossbar. We calculate the total charge Ip and
spin ISz

p currents and voltages Vp in leads p =2–6 in re-
sponse to injected charge current I1 using the multiter-
minal LB formula [27], as implemented in KWANT software
package [30, 42].

The spin Hall angle—defined as θsH = ISz

5 /I1—is
shown in Fig. 4(b) where we confirm large values obtained
from the Kubo formula, as well as the detrimental effect
of clustering of Au adatoms. While both Kubo and LB
formula calculations predict θsH ≃ 0.1 close to the CNP,
thermal broadening effects included in LB formula calcu-

lations can reduce θsH by up to one order of magnitude
[see Fig. 4(b)]. By comparing Fig. 4(b) with Fig. S4 of
the SM [30], we find that the hypothetical case of homo-
geneous Rashba SOC, due to Au adatoms covering every
hexagon in Fig. 1, generates SHE akin to the intrinsic
one in finite-size two-dimensional electron gases [43, 44].
Its θsH exhibits wider peak (centered at EF = 0.3γ0 due
to doping of graphene by Au adatoms) of smaller magni-
tude than in the case of randomly scattered Au adatoms.
Thus, adatom induced resonant scattering [13] plays an
important role in generating large extrinsic SHE.

Figure 4(a) shows RNL as a function of energy and
for various channel lengths L. Most notably, we find
a nonzero RNL even when all SOC terms are switched

off (VR = VI = 0) in Eq. (1), while keeping ran-
dom on-site potential µ 6= 0 due to Au adatoms un-
changed. Furthermore, we find a complex sign change
of RNL in Fig. 4(a) with increasing channel length from
L = 10 nm to L = 300 nm, which suggests the following
interpretation. The total RNL can have four contribu-
tions RNL = RSHE

NL +ROhm
NL +Rqb

NL +Rpd
NL, assuming they

are additive after disorder averaging. For unpolarized
charge current injected from lead 1 (i.e., electrons in-
jected from lead 2): RSHE

NL generated by combined direct
and inverse SHE has a positive sign; trivial Ohmic con-
tribution ROhm

NL due to classical diffusive charge trans-

port [16, 18] has a positive sign; Rqb
NL is the negative qua-

siballistic contribution arising due to direct transmission
T32 6= 0 from lead 2 to lead 3 (see Fig. S6 in SM [30]), as
observed previously in SHE experiments on multitermi-
nal gold devices [28]; finally, Rpd

NL is a positive contribu-
tion specific to Dirac materials where evanescent wave-
functions generate pseudodiffusive transport [45] close to
CNP characterized by two-terminal conductance scaling
as G ∝ 1/L even in perfectly clean samples as long as
their geometry satisfies W > L (see Fig. S5 in SM [30]).

Thus, in device with W > L, such as W = 50 nm
and L = 10 nm in the main frame of Fig. 4(a), the posi-

tive sign RNL is dominated by Rpd
NL, which can be larger

than in the case of perfectly clean graphene in Fig. S5
of SM [30] due to scattering from impurities (of uniform
strength) at CNP [46]. The negative sign of RNL in the
two insets in Fig. 4(a) in the absence of SOC and for
L > W suggests that ROhm

NL can be safely neglected in
our samples due to small ni—we estimate the mean free
path ℓ = 300–400 nm for ni = 15%, so that when diffu-
sive transport regime sets in for ℓ > L the Ohmic con-
tribution ROhm

NL ∝ exp(−πL/W ) [16, 18] is already neg-
ligible due to L/W ≫ 1. Therefore, for L > W the main

competition is between Rqb
NL with negative sign and RSHE

NL

with positive sign, as found in the two insets of Fig. 4(a).
The existence of background contributions to RNL that
do not originate from SHE, and can be even larger than
RSHE

NL , could explain insensitivity of the total RNL to the
applied external in-plane magnetic field observed in some
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experiments [15, 16].

The difficulty in clarifying the dominant contribution
to RNL could be resolved by detecting its sign change as a
function of the channel length L in Fig. 1. An alternative
is to design a setup where ROhm

NL , Rqb
NL, and Rpd

NL are neg-
ligible so that RSHE

NL can be isolated. We propose such
setup in Fig. S7 of the SM [30] where adatoms are re-
moved in the channel. When such channel is sufficiently
long, Rpd

NL = 0 due to L > W and ROhm
NL , Rqb

NL → 0
due to the absence of impurity scattering in the channel,
so that mediative spin current ISz

M generated by direct
SHE in the first crossbar arrives conserved [44] at the
second crossbar where it is converted into VNL by the in-
verse SHE. Indeed, Fig. S8 of the SM [30] demonstrates
that RNL and θsH in this setup are unambiguously re-
lated since they both display sharp peak at virtually the
same EF very close to CNP. The upper limit on RSHE

NL

obtained by this procedure in Fig. S8(a) of the SM [30]
is still smaller than the absolute values of other non-SHE
contributions to RNL in Fig. 4(a).
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[27] M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
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