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We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate
of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency,
controlled by tuning the magnetic field, matches the frequency of standing wave modes in the
cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors
of ten or more. In this paper, we investigate the variation of the cooling rate and equilibrium
plasma temperatures over a wide range of parameters, including the plasma density, plasma position,
electron number, and magnetic field.

Cold, confined, non-neutral plasmas are complex, yet
highly controllable physical systems that have a vari-
ety of potential applications, including basic plasma sci-
ence [1, 2], the production of monoenergetic beams for
spectroscopic and material analysis [3], and experiments
studying the properties of antihydrogen [4–6]. These
plasmas are typically confined in Penning-Malmberg
traps, [7], in which a homogeneous axial magnetic field
restricts transverse motion, and electrostatic potentials,
generated by a series of cylindrically symmetric elec-
trodes, confine the axial motion. The magnetic field
has the coincidental benefit that it causes the confined
charged particles to execute circular, cyclotron orbits,
thereby radiating away transverse energy [8]. At suffi-
ciently high magnetic fields, the cyclotron emission rate
becomes fast enough for this mechanism to cool confined
lepton plasmas [9, 10]; the axial degree of freedom [11, 12]
and additional trapped species [13] may be sympatheti-
cally cooled through collisions.

The cyclotron emission rate depends on the density
of electromagnetic field states which can absorb energy
from the oscillating charges. In describing early NMR
experiments, Purcell [14] argued that a single oscillator
coupled to a resonant circuit sees an enhanced emission
rate Γ over the free-space rate Γ0,

Γ

Γ0
=

3Qλ3

4π2V
. (1)

Here λ is the wavelength of the radiation, V is the volume
of the resonator, and Q is the quality factor. For refer-
ence, the free space lepton cyclotron cooling rate at the
cyclotron frequency ωc is Γ0 = (2/3)e2ω2

c/3πε0mec
3 ≈

0.26B2[T] s−1 for leptons of charge e and mass me. The
factor of 2/3 in this expression accounts for the collisional
cooling of the axial degree of freedom from the two trans-
verse degrees of freedom.

The Purcell effect has been studied in cold atoms [15],

semiconducting lasers [16], and cryogenic solid state sys-
tems [17], but it has not previously been applied beyond
the quasi single-particle regime to the cooling of non-
neutral plasmas.

Penning-Malmberg traps often operate at fields of
∼ 1 T. The resulting cyclotron radiation wavelengths,
λ ∼ 1 cm, are comparable in size to the trap electrodes.
With appropriate electrode geometries, the electrodes
can trap high-Q cavity modes. The resultant enhanced
cyclotron coupling, and hence cooling, was first studied
by Gabrielse and Dehmelt [18] for single electrons, and
later by Tan and Gabrielse [19] for relatively small clouds
of non-equilibrium, parametrically-driven electrons. In
neither case were the resulting electron temperatures
measured directly. Here we study large electron clouds,
indeed, electron plasmas, in thermal equilibrium, and
present direct temperature measurements.

The single particle expression Eq. (1) does not give
the correct cooling rate for non-neutral plasmas which
can acquire an on-resonance impedance comparable to
the vacuum cavity impedance set by Q. O’Neil [8] sug-
gested an optimization matching the cyclotron damping
rate of the plasma to the (vacuum) linewidth of the cav-
ity mode. Under these conditions (matched impedance),
he calculated that the N -particle cooling rate has a max-
imum

Γmax =

√
πe2

9ε0meNVeff
≈ 34

√
χρ [m−3]

N
s−1, (2)

where χρ is the overlap integral which defines an effective
inverse volume for each mode,

χρ =
1

Veff
=

(1/N)
∫
dV ρE2

⊥∫
dV E2

, (3)

and ρ is the plasma density. This factor takes into ac-
count the average field seen by the electrons. The plas-
mas in the experiments reported here are comparable in
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FIG. 1. (a) Experiment schematic showing the electron gun,
the microchannel plate, and the bulge cavity where modes
are trapped. A “reservoir” of electrons (L ≈ 5 cm, r ≈ 1 mm,
N ≈ 108 e−), and the test electrons (L ≈ 1 cm, r ≈ 1 mm,
N ≈ 105 e−), are depicted in blue. (b) The E⊥ cavity
mode intensity patterns simulated by High-Frequency Struc-
ture Simulator [20], shown for two cavity modes in cross sec-
tion. Cavity mode indices can be interpreted as those of
a right circular cylinder mode with the same topology. (c)
Typical temperature measurement data (black) showing the
escaped plasma charge as a function of the plasma confine-
ment voltage, and the corresponding temperature fit (red).

axial length scale to the cavity modes themselves, so we
expect χρ to depend on the plasma shape and position.

Our experiments are done in a cryogenic electron
plasma trap (Fig. 1). The trap is immersed in a strong
axial magnetic field from a helium-cooled superconduct-
ing magnet, and electrons are generated by a thermionic
emission electron gun. By manipulating the potentials on
the 20 mm radius electrodes, we first trap a reservoir of
∼ 108 electrons upstream, and then periodically transfer
103–106 electrons downstream into the bulge cavity. The
electron transfer procedure reproducibly initializes the
test electron cloud/plasma at a high temperature. The
electrons then cool via cyclotron radiation, potentially
with cavity enhancements.

The bulge cavity [21, 22] is formed from three elec-
trodes ranging in radius from 10 mm to 12.5 mm. The
cavity has a total length of about 38 mm, and is open
ended to allow for the transfer of electrons. TheQs of this
cavity range from 300 to 2000, depending on the mode;
here and below we report vacuum Q values, noting that
the presence of the plasma can reduce Q and potentially
scatter mode energy between the cavity and propagat-
ing waveguide modes. The cavity Qs were deliberately
lowered to broaden the mode bandwidths by coating the
cavity/electrode surfaces with nichrome. The cavity sur-

faces are cooled to approximately 16 K. In the absence of
heating mechanisms, the electrons would come into ther-
mal equilibrium with the effective temperature set by the
combined effect of the cavity surfaces and the black body
radiation that leaks in from the cavity ends; these ends
are exposed to distant surfaces at higher temperatures.
We would expect the cooling behavior to be dominated
by these sources when not tuned to a cavity resonance.

We measure the plasma temperatures by raising one of
the axial confining potentials V (t) towards zero, thereby
gradually releasing the plasma electrons. The charge
thus extracted is determined by first amplifying the
plasma electron signal on the microchannel plate (MCP)
[Fig. 1(a)], then converting the amplified signal to light
on the adjacent phosphor screen, and finally detect-
ing the light [Fig. 1(c)] with a photomultiplier (not
shown). If, as we assume, the plasma is Maxwellian dis-
tributed, the charge released is initially proportional to
exp(eV (t)/kT ). By fitting this curve (with a constant
drift offset) to the data, we can obtain T , the plasma
temperature [23].

We can repeat the full experimental cycle (transfer, re-
lax and cool, release and measure T ) about 100 times over
the course of 5 minutes while we sweep the magnetic field
or vary the parameters of the test plasmas. The plasma
length L and position z are varied by changing the ax-
ial confining potentials, while the number N is varied by
adjusting the potentials used to transfer electrons from
the reservoir. The magnetic field can be swept from 0 up
to 1.5 T with ∆B < 0.03 mT precision.

Figure 2(a,b) shows the temperatures of plasmas held
at two different axial locations. The plasmas were al-
lowed to cool for 2 s while the magnetic field was swept at
0.02 mT s−1. For N > 105 electrons, higher cooling rates
(lower temperatures) were sometimes obtained when the
overlap χρ was relatively small. This result seems to dis-
agree with Eqs. (1) and (2). In particular, the TM031 has
E⊥ = 0 on axis, so contributions to the overlap χρ appear
only for plasma electrons at a finite radius. This leads
to a small χρ ≈ 0.03 cm−3 for the plasmas in Fig. 2(a).
Yet this mode exhibits greater cooling power than the
TE131 and TE132, for which χρ ≈ 0.5 and 0.8 cm−3 for
the plasmas in Fig. 2(a).

For a long plasma (L = 12 mm) with N ≈ 2 × 105

electrons centered on the TE132 field minimum at z = 0,
we obtain an approximate Lorentzian line shape for the
cavity enhancement [Fig. 2(c)]. The maximum absolute
cooling rate is Γ ≈ 6 s−1, a factor of 14 enhancement
over the free space emission rate for this mode. The fits
and uncertainties were obtained via a standard bootstrap
approach employing the nls and ns functions in R [24].
The ability to independently vary the cooling rate allows
us to obtain a relationship between Γ and T . We compare
our results to the differential cooling law with a heat
source,

d T

dt
= −Γ(T − Teff) +H, (4)
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FIG. 2. Field scan showing the temperature after 2 sec-
onds of cooling for 105 electrons held at (a) 6 mm and (b)
0 mm axial offset from trap center. The modes were iden-
tified by matching the cyclotron frequencies at the troughs
to the bench-measured cavity resonances [21, 22]. (c) Cool-
ing rate at TE132 for a centered, long plasma. The bands
represent 1σ uncertainty on cooling rates derived from fits to
the plasma temperature reached after 0.25, 0.38, 0.5, 0.75, 3,
and 6 seconds of cooling at each field value. (d) Relationship
between the cooling rate and the temperature reached after
cooling for 6 s (black points). The blue curve is a solution to
the cooling law Eq. (4) with the parameters H = 50 K s−1,
Ti = 23000 K, Teff = 35 K.

where H represents a constant background heating rate
due to plasma expansion and radiofrequency noise cou-
pling in through the electrode wires, and Teff is the effec-
tive temperature of the EM fields seen by the electrons,
which is bounded from below by the electrode tempera-
ture (16 K), but may be raised by radiation from the elec-
tron gun, the MCP, and the plasma itself. To fit the data
to Eq. (4) we assume an initial temperature Ti = 23200 K
(2 eV), but let the parameters H and Teff be determined
by the best fit to the longest cooling time data, shown in
Fig. 2(d). Although Eq. (4) ignores the time and temper-
ature dependence of Γ and H, a reasonable fit is obtained
for higher cooling rate data. For 1/Γ <∼ 0.5 s, the plasma
has already reached its final temperature Tf after 6 s and
the data points all fall along the line Tf = Teff +H/Γ.

In Fig. 3 we plot the temperature for plasmas held
for cooling at different axial positions and continuously
varied magnetic field. The position and shape of a non-
neutral plasma can be controlled to sub-mm precision,
and the overlap integral Eq. (3) calculated using a zero-
temperature solver [25], which combines the axial po-
tential grid with the radial plasma density profile ob-

tained by imaging the plasma when it is dumped onto
the phosphor screen. Although the low-N enhancements
at TE123 seem to match our expectation that higher cou-
pling should lead to faster cooling, the high-N data at
TE134 displays an unexpected pattern; at low electric
fields (close to a node), the plasma was observed to have
higher cooling rates.

Cyclotron lineshape splitting was previously observed
by Tan and Gabrielse [19], and described as being due
to the modulation of the cavity field at the electron ax-
ial bounce frequency. This effect should be especially
large near a node of a cavity mode because the electric
field seen by a bouncing electron goes to zero as it passes
through the node. Since, in many cases, the collision rate
in the plasma is less than the frequency of axial oscilla-
tion, we can clearly observe this effect in Figs. 3(b) and 4.
The splitting can be manipulated by changing the plasma
parameters. For example, by changing the electrode po-
tentials, we can go from a more strongly confining poten-
tial [L = 6 mm in Fig. 4(a)] with a larger frequency to a
less strongly confining potential [L = 9 mm in Fig. 4(b)]
with a lower frequency. It is clear in Fig. 4 that the split-
ting for L = 6 mm is much larger than for L = 9 mm;
preliminary calculations of the frequency splitting match
this observation. The splitting also tends to decrease as
the temperature decreases for fixed electrode potentials.
This effect is most clear in Fig. 4(a). At lower tempera-
ture, the Debye length becomes shorter and the plasma
flattens the potential well, resulting in a lower bounce
frequency and less splitting.

Purcell’s formula Eq. (1) shows that, unlike free-space
cyclotron emission, for which Γ0 ∝ B2, cavity-enhanced
emission should permit fast cooling at relatively low mag-
netic fields. This effect can be demonstrated by going to
a field of 0.29 T and letting the plasmas cool to their min-
imum temperature. The dominant cooling mechanism at
such low magnetic fields is normally thought to be colli-
sions on the background gas; since we held these plasmas
for 36 s, non-cavity cyclotron cooling (1/Γ0 ≈ 46 s at 0.29
T) should have played only a limited role. But because of
the TE111 resonance at 0.2905 T, we obtain a dramatic
reduction of the minimum plasma temperature simply by
tuning the magnetic field from 0.31 to 0.29 T. Although
the Q for this mode is low (Q ≈ 300), the resonant cool-
ing reduces the lowest achievable temperature for small
numbers of electrons by nearly an order of magnitude
(Fig. 5).

For larger numbers of electrons there is little benefit
to operation at the TE111 resonance, as indicated by the
convergence of the on- and off-resonant curves in Fig. 5.
Since the cavity mode cannot be at a higher temperature
than the plasma and still cool the plasma, there is an up-
per bound 1

2kT · ωλ/Q for the rate at which energy can
be removed from the system, assuming a single resonant
mode with frequency ωλ interacting with an N -electron
plasma at temperature T . This leads to the bottleneck
condition NΓ ∼ ωλ/Q [26]. For the TE111 this approxi-
mation gives N ∼ 107 electrons, so this bottleneck argu-
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FIG. 3. Cooling enhancements: (a) TE123 with 2 × 104 electrons, (b) TE134 with 3 × 105 electrons. For each mode, the left
waterfall plot shows the ratio T0/T as a function of the magnetic field and plasma position (T0 is the typical off-resonant
temperature for each dataset). The central color contour plot shows the mode structure. The right graph plots T0/T at zero
detuning [i.e., 0.902 T (a) and 1.436 T (b)] (red points), along with the overlap integral χρ defined by Eq. (3) (blue points).

FIG. 4. Lineshape splitting at TM031 as a function of plasma
length L and temperature T . The confining potentials were
set to produce 6 mm plasmas in (a) and 9 mm plasmas in
(b). Plasma temperatures were measured after cooling for
0.1 (red), 0.5 (orange), 1.5 (green), 4 (blue), and 6 (purple)
seconds. The feature visible at 1.2159 T is from a reservoir
reload.

ment does not explain the temperature increase in Fig. 5,
which begins at N ∼ 105 electrons. Approximately the
same limiting N was observed in cooling data taken at
the TE121 (Q ≈ 1800) and TE131 (Q ≈ 2600).

A different bottleneck occurs when nearly identical os-
cillating dipoles strongly couple to a cavity; such sys-
tems can be decomposed into superradiant and subradi-
ant modes. For simplicity, consider a case where only
one superradiant mode is dominant. This mode has a
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FIG. 5. Equilibrium temperature of plasmas with 104–106

electrons. In the dark red dataset the field is detuned 19.5 mT
(546 MHz) from the TE111 resonance.

decay rate N times the single-particle rate Γ1, while all
other modes have much lower decay rates. Only a small
fraction of the total system energy is ever in the domi-
nant superradiant mode; once this energy damps away,
cooling slows dramatically if the mode is not repopu-
lated. However, dephasing can continuously repopulate
the mode. Such dephasing might be caused, for instance,
by small variations in the cyclotron frequency ∆ωc across
the plasma. If ∆ωc is greater than NΓ1, approximate
equipartition will be maintained, and the plasma will
continue to cool with rate Γ1. For our TE111 mode, we
estimate Γ1 ∼ 10 s−1 and ∆ωc ∼ 2π · 5 MHz. Thus,
quasi-equipartition will be maintained for N <∼ 5 × 105

electrons, and we would expect cooling to slow for larger
N ; this is close to the transition observed in Fig. 5. Even
when N is below this bound, the cooling rate Γmax pre-
dicted by Eq. (2) is only obtained [8] if ∆ωc is tuned
to match the cavity linewidth. We cannot directly con-
trol ∆ωc, and it may evolve as the plasma cools, so it
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is not surprising that even the largest rate observed in
our experiment, 6 s−1 [for the TE132 cavity mode, see
Fig. 2(c)] was less than the corresponding predicted rate,
Γmax ≈ 30 s−1.

In conclusion, we have demonstrated cyclotron-cavity
resonant cooling of pure electron plasmas with large num-
bers of electrons. We implemented this technique in an
open-ended geometry compatible with standard Penning-
Malmberg trap experiments, as well as with experiments
for performing antimatter spectroscopy and molecular
spectroscopy using positrons. The cooling rate was found
to be influenced by a wide range of plasma and trap pa-
rameters, including the mode profile and the plasma den-
sity, length, and temperature. By optimizing the plasma-
cavity overlap, cooling enhancements of up to 14 were
obtained with N > 105 electrons. For these large N plas-
mas, an unexpected but essential requirement for optimal
cooling is that the plasma must be located far from the
field maximum.

The fact that, under certain circumstances, better
cooling appears to be obtained when the plasma is close
to the field null has never, to our knowledge, been ob-
served before. This striking behavior has been observed

in our experiment for all accessible modes having nodes at
the cavity center (TE122, TE132, TE134) as well as those
with antinodes at the center, which require placing the
plasma at a 4–5 mm axial offset (TE123, TE133). Prelim-
inary data suggests that cooling is still enhanced at the
nodes for N ∼ 106 electrons. Therefore cavity enhanced
cooling remains a very attractive possibility for antimat-
ter research, which requires cold plasmas containing mil-
lions of electrons and positrons. Future experiments will
pursue investigations of plasma cavity cooling, particu-
larly at high N , and further explore the node/antinode
optimization.
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