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Achieving error rates that meet or exceed the fault-tolerance threshold is a central goal for quantum com-
puting experiments, and measuring these error rates using randomized benchmarking is now routine. However,
direct comparison between measured error rates and thresholds is complicated by the fact that benchmarking
estimates average error rates while thresholds reflect worst-case behavior when a gate is used as part of a large
computation. These two measures of error can differ by orders of magnitude in the regime of interest. Here we
facilitate comparison between the experimentally accessible average error rates and the worst-case quantities
that arise in current threshold theorems by deriving relations between the two for a variety of physical noise
sources. Our results indicate that it is coherent errors that lead to an enormous mismatch between average and
worst case, and we quantify how well these errors must be controlled to ensure fair comparison between average
error probabilities and fault-tolerance thresholds.

The fault-tolerance threshold theorem is a fundamental re-
sult that justifies the tremendous interest in building large-
scale quantum computers despite the formidable practical dif-
ficulties imposed by noise and imperfections. This theorem
gives a theoretical guarantee that quantum computers can be
built in principle if the noise strength and correlation are be-
low some threshold value [1–3].

To make precise statements of threshold theorems, we must
quantify the strength of errors in noisy quantum operations.
Ideally we would do this in terms of quantities that can be
measured in experiments. A standard measure for quantifying
errors in quantum gates is given by the average error rate,
which is defined as the infidelity between the output of an
ideal unitary gate U and a noisy version EU with noise process
E , uniformly averaged over all pure states,

r(E) = 1−
∫

dψ 〈ψ|E
(
|ψ〉〈ψ|

)
|ψ〉 . (1)

This quantity has many virtues: it can be estimated efficiently
for any ideal gate U , and in a manner that is independent of
state preparation and measurement (SPAM) errors by using
the now standard method of randomized benchmarking [4–7].
Recent experimental implementations include [8–17].

The major drawback of using Eq. (1) to quantify gate er-
rors is that it is only a proxy for the actual quantity of inter-
est, the fault-tolerance threshold. This is because r captures
average-case behavior for a single use of the gate, while fault
tolerance theorems characterize noise in terms of worst-case
performance when the gate is used repeatedly in a large com-
putation. The importance of this distinction has recently been
emphasized by Sanders et al [18], who gave explicit examples
of noise with a large discrepancy between average- and worst-
case error and showed that it is possible for the worst-case
error to scale like

√
r. For some noise types (such as pure de-

phasing and depolarizing noise) the worst- and average-case
behavior essentially coincide [19]. However for other classes
of errors, notably for experimentally relevant errors in detun-
ing and calibration that lead to over or under rotation, the

worst-case behavior can be orders of magnitude worse than
the average in the relevant regime of r � 1. Thus it is not pos-
sible to directly compare a measured value of r to a threshold
result. Despite this, experimentalists are increasingly wishing
to relate the results of benchmarking experiments to fault tol-
erance thresholds. There is thus a pressing need for techniques
that allow for direct comparison between experimentally mea-
surable error rates and fault-tolerance thresholds.

In this Letter, we investigate the relationship between
worst-case and average-case error for a wide range of error
models that are relevant to experiments. Firstly, we show that
while closed form expressions do not typically exist, well-
established theoretical techniques of convex optimization are
often sufficient to determine the relationship between average-
case and worst-case errors for models of physical interest. The
details of these computations are largely relegated to the Sup-
plementary Material [20]. Secondly, we study a wide range
of error models for one-qubit gates. Our main example is of a
one-qubit gate with combined dephasing and calibration error.
This allows us to demonstrate the crossover between a regime
dominated by dephasing, where average-case and worst-case
errors are not too different, and the limit of a unitary noise,
where the worst-case error scales like

√
r. We then turn to

general bounds on worst-case error, showing that it scales as√
r for all unitary errors and that for a wide class of errors it

can be accurately estimated in terms of r and a recently intro-
duced measure of how close an error process is to being uni-
tary. Finally, conventional benchmarking experiments contain
a lot more information than is required just to extract r. We
find that this information can often be used to show that the
worst-case error has an unfavourable scaling. This is an area
that we hope will attract much more study in future.

Fault-tolerance thresholds. A wide range of fault-
tolerance thresholds have been reported. The value of the
threshold depends greatly on the fault tolerant procedures that
are used, on the noise model that is assumed, and whether the
threshold is determined from (possibly conservative) analytic
bounds on the error, or from (possibly optimistic) numerical
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simulations. We emphasize that the errors that are given in
theoretical fault tolerance papers typically refer to some mea-
sure of worst-case error. For example the widely known re-
sults of Aliferis and collaborators [26–28] use concatenated
error correcting codes and consider a stochastic adversarial
noise model that includes all of the noise processes that we
will discuss in this paper. These papers find that large-scale
quantum computation can be performed for errors below a
few times 10−4, when that error is quantified by a measure of
worst-case error such as the diamond distance that we discuss
below. For more optimistic noise models and for fault-tolerant
protocols such as the widely known surface code approaches,
the threshold is around 10−2 based on numerical simulations
of Pauli errors [29]. For Pauli noise however there is no sig-
nificant difference between worst-case and average-case er-
rors [19]. The performance of these schemes in the presence
of coherent errors is not yet understood.

It is possible to state a version of the threshold theorem di-
rectly in terms of r, but given current knowledge the thresh-
olds in these theorems would be roughly the square of current
thresholds (around 10−8 for [26–28]). It is unclear if this can
be significantly improved upon since it may be that it is the
worst-case error that is physically relevant to the success of
the computation. However, our results here motivate research
into whether current fault tolerance results could be strength-
ened to provide significantly improved thresholds when ex-
pressed in terms of r for error models sufficiently general to
include coherent errors.

Diamond distance. We will now describe the most com-
monly used metric of worst-case error for quantum processes.
Any candidate measure of distance ∆(E ,F) between noise
operations E and F should satisfy certain desirable proper-
ties [30]. (The operation F should be thought of as a per-
fect identity gate for our purposes.) First, like any good dis-
tance measure it should have the structure of a metric, which
in particular means it should be symmetric, positive, and obey
the triangle inequality. Less obviously, but even more impor-
tantly, it should obey two additional properties: chaining and
stability. The chaining property,

∆(E2E1,F2F1) ≤ ∆(E1,F1) + ∆(E2,F2) , (2)

says that composing two noisy operations cannot amplify the
error by more than the sum of the two individual errors. Thus,
errors can grow at most linearly in the number of operations.
The stability property states that the error metric for a single
gate should be independent of whether that gate is embedded
in a larger computation. So we require

∆(I ⊗ E , I ⊗ F) = ∆(E ,F) , (3)

where I is the identity operation. This ensures that our mea-
sure is robust even if the input to the gate is entangled with
other qubits in the computation.

The diamond distance, whose formal definition is

D(E ,F) = 1
2 max

ρ
‖I ⊗ F(ρ)− I ⊗ E(ρ)‖1 , (4)

satisfies each of these physically motivated desiderata [1]. It
also has an appealing operational interpretation as the maxi-
mum probability of distinguishing the output of the noisy gate
from the ideal output [1, 31]. It is not obvious from the defi-
nition how to do practical computations with this quantity, but
it can be computed efficiently using the methods of semidef-
inite programming [32–34]. Because of these properties, the
diamond distance is an ideal measure for quantifying noise for
the purposes of a fault-tolerance threshold, although in princi-
ple other quantities could be employed as well [2].

The only drawback of this quantity is that it is not known
how to measure it directly in experiments. It is therefore of in-
terest to have a conversion to, or at least bounds for, diamond
distance in terms of the average gate fidelity. To date, the best
known bounds for a d-level quantum gate are [35]

d+1
d r ≤ D ≤

√
d(d+ 1)r ,

but it is unknown for what conditions these bounds are tight.
Single-qubit calibration and dephasing errors. In order

to discuss the relationship between average-case and worst-
case errors in quantum computing demonstration experiments
we will now analyze in detail a simple but physically relevant
noise model for a single-qubit gate. Suppose that the gate is
implemented by the noisy control Hamiltonian Hc = J(t)σz .
Due to experimental imperfections the control J(t) that is
implemented is distinct from the nominal control J0(t) that
would perfectly implement the required gate. Physically, this
noise results in two distinct types of errors: dephasing, where
δJ(t) = J−J0 varies stochastically between uses of the gate,
and calibration error where δJ takes the same fixed value
each time the gate is used. Where δJ(t) is stochastically vary-
ing we assume that the noise level does not change with time,
and that that the noise spectrum for δJ(t) is mainly confined
to frequencies f > 1/tg , where tg is the time required to
perform the gate. When averaged over uses of the gate the re-
sulting noisy operation is EU where U is the desired gate and
the noise process amounts to

E(ρ) = pσze
−iδσzρeiδσzσz + (1− p)e−iδσzρeiδσz . (5)

In this noise model the dephasing noise rate p arises from
the time-varying noise on the gate, while the unitary over ro-
tation δ results from the fixed miscalibration of the control
pulse J(t). (Although we speak here in terms of calibration
errors, this also approximately captures the effects of highly
non-Markovian errors arising from very low-frequency noise
in J(t).)

This noise model roughly captures many experimental
gates, but more importantly it will demonstrate the range of
behaviors that can be expected in terms of the relationship be-
tween average-case and worst-case error. Specifically when
δ = 0 we have a pure dephasing process. For such errors [19]
the worst case error scales like r, so this is the most favor-
able possible behavior. On the other hand for p = 0 we have
a purely unitary rotation error that has the worst possible be-
havior, where the worst-case error scales like

√
r.
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FIG. 1. Average error rate r and worst-case error rate (diamond dis-
tance) D for a combination of dephasing and unitary errors. The
logarithmic plot is of D/r, which quantifies how much greater the
worst-case error is than the average case as a function of a unitary
over rotation angle δ and a dephasing probability p, where the exact
noise process is given in Eq. (5). When p ≥ δ, then D and r are
comparable to within a small factor, but as soon as δ > p then D
rapidly becomes much greater than r.

Using well-known techniques [36, 37] we find the aver-
age error rate for this calibration and dephasing (CD) noise
to be rCD = 2

3

(
p cos(2δ) + sin2 δ

)
. Employing the semidef-

inite programming approach of Refs. [19, 32], we can eval-
uate the diamond distance for this noise channel and find
DCD =

√
3
2rCD − p(1− p). A logarithmic plot of the ratio

DCD/rCD is shown in Figure 1.
In the interesting regime of low error we find rCD '

2(p + δ2)/3, while DCD '
√
p2 + δ2. From this we can

see that when p � |δ| we have DCD ' 3rCD/2, as for a pure
dephasing process, and there is no great difference between
worst-case and average-case errors. But as the calibration er-
ror grows, the worst-case error grows significantly. When cal-
ibration error dominates, |δ| � p, we find DCD '

√
3rCD/2.

In this regime an average error rate rCD of around 10−4 corre-
sponds to a more than one percent worst-case error. Physically
then, we see that as dephasing error is reduced in a particu-
lar experimental setting, this places more stringent demands
on the calibration required if the average error rate r is to be
compared directly to a fault-tolerance threshold.

Single-qubit relaxation errors. Another natural single-
qubit noise process to consider is qubit relaxation or ampli-
tude damping errors (spontaneous emission or a T1 process
in NMR language), at finite temperature. In this process a
qubit with energy splitting E is coupled to a bath at temper-
ature T . Define as in [38] the probability for a decay pro-
cess during the action of the gate is γp and the probability

p
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FIG. 2. Tradeoff between average error rate r and the worst-case er-
ror rate in terms of the diamond distanceD for the thermal amplitude
damping channel, where the parameter p controls the temperature
with p = 1 corresponding to zero temperature and p = 1/2 cor-
responding to infinite temperature. The dashed line is the previous
best upper bound [35], while the upper black line is the new bound
derived here. The zero-temperature limit (p = 1) gives the least fa-
vorable scaling of D with r, but in every case the bound D ≤ 3r
holds. The infinite-temperature limit (p = 1/2) recovers the known
value of D = 1.5r.

to go from the ground to the excited state is γ(1 − p). The
ratio of upgoing to downgoing transition rates p/(1 − p) =
exp(−E/kBT ) is the Boltzmann factor, which allows us to
identify p = 1/2 as infinite temperature and p = 1 as zero
temperature. For this amplitude damping (AD) noise chan-
nel we find rAD =

(
1 −
√

1− γ + γ/2
)
/3. Although we

have no closed form expression for the worst-case error for
these channels, we have adapted standard techniques in the
analysis of semidefinite programs to find the bound DAD ≤
3rAD max{p, 1 − p}. Therefore we have a guarantee that the
average-case and worst-case errors are not too different. Com-
paring with a direct evaluation of the semidefinite program we
find DAD ' 3rAD for zero temperature (p = 1) and low noise
rAD � 1, so this is the tightest bound possible. In the limit
of high temperature p→ 1/2 we approach a dephasing chan-
nel and recover the formula DAD = 3rAD/2. This behavior is
illustrated in Figure 2.

Leakage errors Another important class of errors encoun-
tered in experiment is leakage errors. Modified random-
ized benchmarking protocols for leakage errors are proposed
in [39, 40]. In Ref. [39] it was shown that a nearly trivial mod-
ification of a standard benchmarking protocol in the presence
of leakage errors can still be used to determine the average
error rate r, so we again use this figure of merit for compari-
son. For a leakage model we need to consider a larger space
of states, so we add a leakage level |l〉 to the two-qubit states
|0〉, |1〉. We follow [40] in distinguishing coherent and inco-
herent leakage errors and compare the average-case error to
the true worst-case error; this will be the diamond distance
on the full state space including both the leakage and qubit
states. Fault-tolerance theorems also exist for leakage error
processes [41] and this is the appropriate noise measure to
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compare with the numerical values found in those papers.
As an example of incoherent leakage (IL) we will consider

the case where the qubit state |1〉 relaxes to |l〉with probability
p. A benchmarking experiment (following [39]) then obtains
the average-case error rIL = [1 −

√
1− p + p]/3 where this

is now the infidelity averaged over states initially in the qubit
subspace. Since this process is so similar to the amplitude
damping channel we can use analogous techniques to find the
inequalityDIL ≤ 2rIL. Thus for this error process the average-
case and worst-case error again almost coincide.

As an example of coherent leakage (CL), consider the uni-
tary noise process ECL(ρ) = U(δ)ρU(δ)† given by U(δ) =
exp[−iδ(|1〉〈l| + |l〉〈1|)]. For this noise process one obtains
rCL = [1− cos δ − cos2 δ]/3. However, as for the unitary er-
rors discussed above, the worst-case error can be much larger
than this. We find

√
3rCL/2 ≤ DCL = | sin δ| ≤

√
2rCL

for all δ ∈ [−π/2, π/2] and consequently the worst case er-
ror scales like

√
rCL. Where leakage errors are possible, it

would be important to use the methods of [40], or some other
method to bound coherent leakage errors, before comparing
the average-case error r to a fault-tolerance threshold.

Unitary errors. In looking at these examples we have
found that unitary or nearly unitary errors appear to result
in the largest difference between average-case and worst-case
errors. This is true in general. For unitary errors in a d-
dimensional space we find the following inequalities√

d+1
d

√
rU ≤ DU ≤

√
(d+ 1)d

√
rU.

Thus any unitary error has a worst-case error scaling like
√
rU.

A general inequality. For a large and important class of
noise processes, the worst-case error can be directly estimated
from benchmarking-type data without side information about
the type of error, which generally requires doing full quan-
tum process tomography [42], or one of its SPAM-resistant
variants [43, 44]. In Ref. [45] a quantity called the unitarity
u(E) of a noise process E was defined (see the Supplementary
Material [20] for a precise definition), and it was shown that
this can be estimated efficiently and accurately using bench-
marking. We find that for all unital noise (i.e. noise where the
maximally mixed state is a fixed point) with no leakage, the
unitarity and the average error rate together give a characteri-
zation of the worst-case error via the inequality [46]

cd

√
u+

2dr

d− 1
− 1 ≤ D ≤ d2cd

√
u+

2dr

d− 1
− 1 , (6)

where cd = 1
2 (1 − 1

d2 )1/2. Since the unitarity generally
obeys the inequality u ≥ (1 − dr/(d − 1))2 (see Ref. [45])
we find (for unital noise without leakage) that the worst-
case error scaling matches the average-case if and only if
u = 1− 2dr/(d− 1) +O(r2).

To illustrate the power of Inequality (6), we immediately
find that for the single-qubit calibration and dephasing noise
model, the condition 1 − uCD = 4rCD + O(r2CD) is both nec-
essary and sufficient to recover the favorable linear scaling

between the worst- and average-case errors. In fact, the worst-
case error for this channel can be expressed directly in terms

of the unitarity as DCD =
√

3
2rCD − 3

8 (1− uCD). And be-
cause the unitarity can be estimated from a benchmarking-
type experiment, this gives direct experimental access to
worst-case errors for this family of noise models without the
need for expensive tomographic methods.

Moreover, Inequality (6) allows us to get insights into gen-
eralizing our conclusions for single-qubit models to few-qubit
systems such as those required for entangling quantum gates.
A natural generalization of our CD model to two-qubit cal-
ibration and dephasing errors would be an independent de-
phasing rate p on each qubit and unitary noise given by eiHCD2

where HCD2 = δ1σ
(1)
z + δ2σ

(2)
z + εσ

(1)
z σ

(2)
z . The semidef-

inite programming approach is possible here, but becomes
unwieldy because there are so many free parameters. How-
ever, both the average error rate and the unitarity are readily
computed as in the appendix. Inequality (6) then allows one
to easily and generally explore the tradeoffs in the calibra-
tion accuracy of the δ and ε parameters such that the overall
error remains roughly consistent between average and worst
case. Furthermore, since uCD2 can be measured efficiently in
a benchmarking experiment, large values of u can be used to
herald that an experiment has left the favorable scaling regime
and more characterization and calibration must be done.

Conclusion and Outlook. We have seen that many realis-
tic noise processes admit a linear relation between the average
error rate (which is accessible experimentally) and the worst-
case error (which is the relevant figure of merit for fault toler-
ance). The exceptions to this rule are highly coherent errors,
where the worst-case error scales proportionally to the square
root of the average error rate.

While our methods and results are very general, there are
noise sources that we have not tried to fit into our error tax-
onomy. Errors such as crosstalk [48], time-dependent or non-
Markovian noise [49, 50] should be amenable to these meth-
ods, however, and extending our results to cover such noise is
an important avenue for future work.

Finally, we reiterate that it is an interesting open question if
it is possible to prove a fault-tolerance threshold result directly
in terms of r without the lossy conversion toD. Fault-tolerant
circuits are not perfectly coherent since measuring error syn-
dromes necessarily removes certain coherences, and this may
provide an avenue to develop stronger theorems.
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