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Quantum control of systems plays important roles in modern science and technology. The ulti-
mate goal of quantum control is to achieve high fidelity universal control in the time-optimal way.
Although high fidelity universal control has been reported in various quantum systems, experimental
implementation of time-optimal universal control remains elusive. Here we report the experimental
realization of time-optimal universal control of spin qubits in diamond. By generalizing a recent
method for solving quantum brachistochrone equations [X. Wang, et al., Phys. Rev. Lett. 114,
170501 (2015)], we obtained accurate minimum time protocols for multiple qubits with fixed qubits’
interactions and constrained control field. Single- and two-qubit time-optimal gates are experi-
mentally implemented with fidelities of 99% obtained via quantum process tomography. Our work
provides a time-optimal route to achieve accurate quantum control, and unlocks new capabilities
for emerging field of time-optimal control in general quantum systems.

The time-optimal control (TOC), including famous ex-
amples of the brachistochrone problem [1] and the Zer-
melo navigation problem [2], has been widely investigated
for over three centuries. TOC of quantum systems has
recently attracted great interest due to the rapid devel-
opment of quantum information processing and quantum
metrology. Because the ever-present noise from the en-
vironment degrades quantum states or operations over
time, generating the fastest possible evolution by TOC
becomes a preferable choice for realizing precise quantum
control in the presence of noise. To obtain accurate TOC
protocols is difficult because both the fidelity and time
should be optimized. Analytical methods utilizing the
Pontryagin maximum principle or the geometry of the
unitary group are applicable only to specific problems
and constraints [3–10]. Recently, the quantum brachis-
tochrone equation (QBE) has been proposed to provide
a general framework for finding time-optimal state evo-
lutions or unitary operations [11–18]. The QBE has been
applied to some cases where analytic solutions exist [15–
17]. For the problems where the QBE cannot be ana-
lytically solved, an effective numerical method has been
developed [18]. The relationship between TOC and gate
complexity has also been explored [19, 20]. Experimental
TOC has been implemented only in single-qubit systems
[21–23], while experimental time-optimal universal con-
trol, which requires universal single-qubit gates as well
as a non-trivial two-qubit gate, has not been reported.

Here we demonstrate the first experimental time-
optimal universal control of a two-qubit system, which
consists of an electron spin and a nuclear spin of a
nitrogen-vacancy (NV) center in diamond. High-fidelity
single- and two-qubit gates are realized with fidelities of

99% obtained via quantum process tomography. Our re-
sults show that TOC provides a novel route to achieve
precise universal quantum control. The approach to real-
ize time-optimal control of multiple qubits can be applied
to other quantum systems.

As shown in Fig. 1, the quantum system is driven
by the Hamiltonian H(t), which is described by the
Schrödinger equation U̇ = −iH(t)U , with boundary con-
ditions U(0) = I and U(T ) = UF (we set ~ = 1). Dif-
ferent Hamiltonians H(t) make the evolutions of the sys-
tem follow different paths (labeled by Γi) to the same
unitary operation UF . The path with the minimal time
cost can be obtained by solving the QBE [12] together
with Schrödinger equation. The QBE is written as

Ḟ = −i[H,F ], (1)

where F = ∂LC/∂H and LC =
∑

j λjfj(H), with λj the
Lagrange multiplier. One physically relevant constraint
is the finite energy bandwidth described as f0(H) ≡
[Tr(H2) − E2]/2 = 0, where E is a constant. Ref. 18
provides a method to obtain the accurate minimum-time
protocol by solving the QBE equation.

In realistic physical systems, part of the Hamiltonian
H is usually time independent (e.g. fixed couplings be-
tween spin-qubits), and the reasonable constraint for the
energy is actually for the time variable part (e.g. the
shaped microwave pulse with bounded power). These
have been recently recognized and investigated as the
quantum Zermelo navigation problem [24, 25]. The orig-
inal QBE is not able to provide solution to this prob-
lem directly. Here we rewrite the Hamiltonian H(t) as
H = H0 +Hc(t), where the drift Hamiltonian H0 stands
for the time invariable part and Hc(t) stands for the con-
trol Hamiltonian. The drift Hamiltonian H0 can be the
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FIG. 1. (color online). Schematic representation of quantum
TOC. Blue lines represent paths of quantum evolution in the
SU(2n) operator space, where n stands for the number of
qubits. To realize a target evolution operator UF at t = T
starting from the identity operator I at t = 0, there are several
choices of evolution path Γi, (i = 1, 2 . . .). The goal of TOC
is to figure out which evolution costs the minimum time T .

fixed spin couplings or nonzero constant external mag-
netic field. The control Hamiltonian Hc(t) can be a con-
trollable external magnetic field or adjustable couplings
between qubits. The constraint of finite energy band-
width is modified to f0(Hc) = 0. Then the TOC of
multiple qubits, which is experimentally feasible, can be
obtained by solving the QBE with the mentioned im-
provements (see Section II in Supplementary Material).
This method can be taken as the generalization of the
method in Ref. 18, which is the case of H0 = 0.

We experimentally demonstrate TOC of single- and
two-qubit on an NV center in diamond. The NV cen-
ter is composed of an electron spin and a nitrogen nu-
clear spin. A static magnetic field of about 500 G is ap-
plied along the NV symmetry axis ([1 1 1] crystal axis)
and removes the degeneracy between the |mS = +1〉
and |mS = −1〉 electron spin states. Under such a
magnetic field, the spin state of the NV center is ef-
fectively polarized to |mS = 0,mI = +1〉 when a 532
nm laser pulse is applied [26]. Microwave pulses driv-
ing electron spin transition |mS = 0〉 to |mS = −1〉
and radio-frequency pulses driving nuclear spin transi-
tion |mI = +1〉 to |mI = 0〉 are utilized to manipulate
the spin states. The |mS = +1〉 electron spin level and
|mI = −1〉 nuclear spin level remain idle due to large de-
tuning. TOC is demonstrated on the two-qubit system
composed by |mS = 0,mI = +1〉, |mS = −1,mI = +1〉,
|mS = 0,mI = 0〉, and |mS = −1,mI = 0〉 without con-
sidering the other spin levels (see Section I and Fig. S1
in Supplementary Material).

The experiment was implemented on an NV center in
[100] face bulk diamond. The nitrogen concentration in
the diamond was less than 5 ppb and the abundance of
13C was at the natural level of 1.1%. The NV center
was optically addressed by a home-built confocal micro-

scope. Spin-state initialization and detection of the NV
center was realized with a 532 nm green laser controlled
by an acousto-optic modulator (ISOMET, power leakage
ratio ∼1/1000). To preserve the NV center’s longitudi-
nal relaxation time from laser leakage effects, the laser
beam was passed twice through the acousto-optic mod-
ulator before going through an oil objective (Olympus,
PLAPON 60*O, NA 1.42). The phonon sideband fluores-
cence (wavelength, 650∼800 nm) went through the same
oil objective and was collected by an avalanche photo-
diodes (Perkin Elmer, SPCM-AQRH-14) with a counter
card. A solid immersion lens (SIL) was created around
the NV center to increase the fluorescence collection ef-
ficiency. The magnetic field was provided by a perma-
nent magnet and aligned by monitoring the variation of
fluorescence counts. The spin states of the NV center
were manipulated with microwave and radio-frequency
pulses. The microwave and radio-frequency pulses were
generated by an arbitrary waveform generator (Keysight
M8190A), amplified individually with power amplifiers
(Mini Circuits ZHL-30W-252-S+ for microwave pulses
and LZY-22+ for radio-frequency pulses), and combined
with a diplexer (Marki DPX-1). An ultra-broadband
coplanar waveguide with 15 GHz bandwidth was de-
signed and fabricated to feed the microwave and radio-
frequency pulses.

Universal control of a single qubit requires the abil-
ity to realize rotations around two different axes of the
Bloch sphere. The evolution operator is denoted with
R(n̂, θ), corresponding to a rotation of angle θ around
axis n̂ = x̂ sin γ cosϕ+ŷ sin γ sinϕ+ ẑ cos γ. The method
to realize TOC gates, which rotate the quantum states
along two different axes is detailed in Section II in Sup-
plementary Material. We take a target unitary trans-
formation R(ẑ, θ) on the electron spin-qubit as an ex-
ample. In the rotating frame, H0 = 2πδSz, Hc(t) =
2πν1[cosφ(t)Sx + sinφ(t)Sy], where Sx, Sy, and Sz are
effective spin operators of the electron spin-qubit, δ is
the detuning term, ν1 > 0 stands for the amplitude of
the microwave pulse, and φ(t) is the phase of microwave
pulse. The control Hamiltonian Hc satisfies two con-
straints, which are f0(Hc) ≡ [Tr(H2

c ) − 2π2ν21 ]/2 = 0
and f1(Hc) ≡ Tr(HcSz) = 0. The solution to the QBE
is φ(t) = 2πηt + φ(0), where η is a constant. Then the
detailed parameters of the control Hamiltonian (e.g. η
and φ(t)) and the minimum evolution time T can be
obtained by further solving the Schrödinger equation.
By following the procedure described above, we can de-
rive the explicit analytical solutions to the TOC for re-
alizing R(ẑ, θ). Without loss of generality, we present
the analytical solution when δ ≥ 0 and θ ∈ [0, 2π).
If θ < π(1 +

√
3δ/ν1), the minimum evolution time

T = [δ(θ/2π−1) +
√
ν21 + δ2 − ν21(θ/2π − 1)2]/(ν21 + δ2);

otherwise, the minimum evolution time becomes T =
[δθ/2π +

√
ν21 + δ2 − ν21(θ/2π)2]/(ν21 + δ2). The mini-

mum evolution time T versus θ and δ/ν1 is shown in
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FIG. 2. (color online). Comparison on time cost for tar-
get gate operator R(ẑ, θ) between the derived TOC and the
Euler rotations. The parameters are set to be δ = 0 and
ν1 = 5 MHz. (a) Theoretical comparison on time with
θ ∈ (0, π]. (b) Comparison of experimental gate time for
θ = π/8, π/4, π/2, and π. The gate time for TOC is consider-
ably shorter than that for Euler rotation. (c) State evolutions
during R(ẑ, π) with TOC and Euler rotation. The initial state
is (|ms = 0〉 + i|ms = −1〉)/

√
2. The gate time of TOC is

26.8 ns shorter than that of the Euler rotation.

Supplementary Fig. S2. The case when δ 6= 0 is of im-
portance to those systems where it is challenging to ad-
just the detuning, such as the singlet-triplet spin qubit
in a double-quantum-dot system [27, 28]. When δ = 0,
our result reduces to that in Ref. 7.

The realization of a target R(ẑ, θ), θ ∈ (0, π] when
δ = 0 is taken as an example to compare the
time cost between the derived TOC and a non-
optimized evolution path with Euler rotation: R(ẑ, θ) =
R(x̂, π/2)R(ŷ, θ)R(−x̂, π/2). The experimental ampli-
tude of control field is set to be ν1 = 5 MHz. Theo-
retical comparison of the time cost for gate operations
between TOC and Euler rotation is shown in Fig. 2a.
It is clear that the time cost with TOC is considerably
shorter than that with Euler rotation for all the rotation
angles. We experimentally implement the target gate op-
erators R(ẑ, π/8), R(ẑ, π/4), R(ẑ, π/2), and R(ẑ, π) with
both methods. Figure 2b shows the comparison of the

experimental gate time. The time durations for gate op-
erations with TOC are 69.6, 96.8, 132.3 and 173.2 ns,
which are 42.9, 28.1, 17.7 and 26.8 ns shorter than those
with the Euler rotation, respectively. Figure 2c shows
the state evolution during R(ẑ, π). The initial state is
prepared to (|ms = 0〉+ i|ms = −1〉)/

√
2. We performed

measurements of 〈Sy〉 and 〈Sz〉 on the states during the
evolution. As shown in Fig. 2c, the target evolution of
R(ẑ, π) is realized at 173.2 ns with TOC and at 200 ns
with Euler rotation. All the gate fidelities [29] are mea-
sured to be above 0.99 via quantum process tomography
[30].

The case when δ 6= 0 has also been experimentally im-
plemented. Both R(ẑ, θ) and R(x̂, θ) with various values
of θ has been demonstrated. Furthermore, time-optimal
universal single-qubit control with other constraints on
Hc is also experimentally demonstrated. The implemen-
tations are characterized utilizing quantum process to-
mography (see Section III in Supplementary Material).
The experimental results for the cases are presented in
Section II, Fig. S3, Fig. S4, and TABLE I of the Supple-
mentary Material. Our results show the universality of
our approach to perform time-optimal universal control
for a single qubit.

Universal control of qubits also requires a non-trivial
two-qubit gate [31]. In our experiment, we demonstrate
a controlled-U gate with

Uc =


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

 , (2)

which is also a non-trivial two-qubit gate [31]. In
our experiment, we have demonstrated this two-qubit
gate in time-optimal way with the system consisting
of the electron and nuclear spins. Electron (nuclear)
spin states |mS = 0〉 and |mS = −1〉 (|mI = +1〉
and |mI = 0〉) are encoded as the electron (nuclear)
spin-qubit. The quantum state of the two-qubit system
is denoted as |mS ,mI〉, with corresponding population
denoted as PmS ,mI

hereafter. The drift Hamiltonian,
H0 = 2πASzIz, is the hyperfine coupling between the
spins, where Iz is the effective spin operator of the nu-
clear spin-qubit and the hyperfine coupling strength is
A = −2.16 MHz. We consider a model in which only
controls with bounded strength on the electron spin are
applied, while the control Hamiltonian takes the form
Hc(t) = 2πν1[cosφ(t)Sx + sinφ(t)Sy]. The strength
of the control field ν1 is set to 2.5 MHz. The con-
straints on the control Hamiltonian can be described by
f0(Hc) = 0 and fk(HC) ≡ Tr(HCBk) = 0, where {Bk} =
{Ix, Iy, Iz, SxIx, SxIy, SxIz, SyIx, SyIy, SyIz, Sz, SzIx,
SzIy, SzIz}. The target evolution operator is a controlled
unitary gate which flips the electron spin-qubit iff the nu-
clear spin-qubit is in state |mI = 0〉. The time-optimal
control Hamiltonian is obtained by numerically solving
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FIG. 3. (color online). State trajectories under the two-qubit
controlled-U gate by TOC with initial states (a) |0, 1〉 and
(b) |0, 0〉. The left panels show the state evolutions of the
nuclear and electron spins on the Bloch spheres. When the
nuclear spin qubit is in the state |1〉 (|0〉) labeled by the blue
arrows, the electron spin qubit undergoes the paths labeled
by red lines to the state |0〉 (| − 1〉). The right panels show
the experimental dynamics of state populations P0,mI (black
circles) and P−1,mI (grey diamonds), and lines are theoretical
predictions of the populations. The error bars on the data
points are the standard deviations from the mean.

the QBE together with the Schrödinger equation (see
Section II in Supplementary Material). If the dephas-
ing effect and the imperfection of the control field are
taken into account [32], the theoretical fidelity of Uc is
estimated to be 0.9933. The detailed experimental pulse
for time-optimal control and the fidelity estimation are
included in Section II and Fig. S5 in Supplementary Ma-
terial. The time duration of the controlled-U gate with
TOC is 446 ns. A conventional method to implement
the controlled-U gate with constraint control field is to
apply a selective pulse [33, 34]. With ν1 = 2.5 MHz (the
same as that in TOC), the time duration to implement
the controlled-U gate with a selective pulse is 612.4 ns
(see Section II in Supplementary Material), which is more
than 160 ns longer than that with TOC.

Figure 3 shows the state evolutions under Uc via TOC.
In Fig. 3a and b, the initial states are prepared into
|0, 1〉 and |0, 0〉, respectively. The left panel of Fig. 3a
(b) shows the state trajectory of the electron spin-qubit
on the Bloch sphere, while the nuclear spin state is
|mI = +1〉 (|mI = 0〉). It is clear that the electron
spin-qubit is flipped to the state |− 1〉 with nuclear spin-
qubit in |mI = 0〉, and the state of the electron spin-
qubit returns to the state |0〉 with nuclear spin-qubit in
|mI = +1〉. In the right panels of Fig. 3a and b, exper-
imental populations of |0,mI〉 and | − 1,mI〉 (i.e. P0,mI

and P−1,mI
) during the Uc gate are recorded. The exper-

imental results represented by symbols are in agreement
with theoretical predictions represented as lines. The
small deviation from 1 (0) of P0,mI

(P−1,mI
) at t = 0 is

FIG. 4. (color online). Quantum process tomography for
controlled-U gate by TOC. The left and right panels are the
real and imaginary parts of the reconstructed process matrix
χ. The error bar of each point is about 0.01 due to the statis-
tics of photon counts. An average gate fidelity of 0.99(1) can
be obtained from the process matrix.

due to imperfect polarization of the electron spin (about
0.95 which is measured with sequences described in Sec-
tion IV and Fig. S6 in Supplementary Material).

We further perform quantum process tomography (see
Section III in Supplementary Material) to characterize
the Uc gate. A set of sixteen initial states are prepared,
after which the Uc is applied, and quantum state tomog-
raphy is applied to reconstruct the final state correspond-
ing to each initial state. With the information of the 16
final states, the process matrix χ is determined in the
Pauli basis {σi ⊗ σj}, where σi(j) ∈ {I,X, Y, Z}, I is the
identity operator, and X = σx, Y = σy, and Z = σz
are Pauli operators. Figure 4 shows the real and imagi-
nary parts of the experimental process matrix. The aver-
age gate fidelity of the two-qubit gate in our experiment
is 0.99(1), which reaches the threshold of fault-tolerant
quantum computations [35]. The shortest possible time
duration of the gate operation by TOC is advantageous
to high fidelity due to the reduction of the dephasing ef-
fect. The relative small strength of control field also con-
tributes to the high fidelity, as the noise induced from the
control field is proportional to the control field [32, 36].

Discussion.—Manipulation of quantum systems is of
fundamental significance in quantum computing [30],
quantum metrology [37], and high-resolution spec-
troscopy [38–40]. It is desirable to achieve universal con-
trol with high fidelity and in minimal time interval in the
presence of decoherence. High fidelity universal control
has been reported in various quantum systems, includ-
ing trapped ions [41], superconducting circuit [35], NV
centers in diamond [32, 42], and spins in silicon [43, 44].
However, experimental demonstration of universal con-
trol, when high fidelity and minimal time are satisfied
simultaneously, were not achieved in the previous work.
We have realized the time-optimal universal control of
two-qubit system in diamond with high fidelity. Our re-
sults provide an experimental validation of TOC casting
high-fidelity control operation on multi-qubit systems.
The approach developed in this work to realize accurate
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minimum time control of multi-qubits can be applied to
other important physical systems.
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