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We show that, in the presence of a π/2 artificial gauge field per plaquette, Mott insulating phases of ultra-
cold fermions with SU(N ) symmetry and one particle per site generically possess an extended chiral phase
with intrinsic topological order characterized by an approximate ground space of N low-lying singlets for
periodic boundary conditions, and by chiral edge states described by the SU(N )1 Wess-Zumino-Novikov-Witten
conformal field theory for open boundary conditions. This has been achieved by extensive exact diagonalizations
for N between 3 and 9, and by a parton construction based on a set of N Gutzwiller projected fermionic wave-
functions with flux π/N per triangular plaquette. Experimental implications are briefly discussed.

PACS numbers: 67.85.-d, 71.10.Fd, 75.10.Jm, 02.70.-c

The search for unconventional quantum states of matter
in realistic models of strongly correlated systems has been
an extremely active field of research over the last 25 years.
Mott insulating phases in which charge degrees of freedom
are gapped have been argued to potentially host several fami-
lies of quantum spin liquids ranging from Resonating Valence
Bond Z2 quantum spin liquids [1–3] to U(1) algebraic spin
liquids [4–6] and chiral spin liquids (CSLs) [7–15]. The topo-
logical properties of these phases have attracted a lot of at-
tention due to their potential impact on the implementation of
quantum computers [16].

Cold atoms open new perspectives in that respect. In partic-
ular, alkaline rare earths allow to realize SU(N ) Mott phases
with N as large as 10 [17–24], and if a chiral phase can be
stabilized, its low-energy theory is expected to be the SU(N )
level k = 1 Chern-Simons theory. The possibility to destroy
long-range order in SU(N) generalizations of the SU(2) anti-
ferromagnet on bipartite lattices has long been known [4, 25],
but the first proposal of a chiral phase in the context of SU(N)
models of cold atoms goes back to the work of Hermele et al
[26, 27], who showed that a mean-field approach leads to the
stabilization of chiral phases on the square lattice in the limit
of largeN and large number of particles per sitem withN/m
integer and ≥ 5. The same mean-field applied to SU(6) on
the honeycomb lattice with one particle per site has also led
to the prediction of a chiral state, with a competing plaque-
tte state very close in energy [28]. More recently Ref. [29]
suggested the stabilization of SU(N ) CSLs on the square lat-
tice using static synthetic gauge fields, based on a slave-rotor
mean-field approach. In all theses cases, the results call for
further investigation with methods that go beyond mean-field
theory.

In this Letter, we show that the ground state of the Mott
phase of N -color fermions on the triangular lattice with one
particle per site is a SU(N ) CSL in a large parameter range if
the system is subject to a static artificial gauge field with flux

π/2 per triangular plaquette. The starting point is the SU(N )
Hubbard Hamiltonian

H = −t
∑
〈i,j〉

N∑
α=1

(eφijc†i,αcj,α+H.c.)+U
∑
i,α<β

ni,αniβ (1)

If the phases φij are chosen in a such a way that the (gauge-
invariant) flux through each triangular plaquette is equal to Φ,
then, at a filling of one particle per site, and for large enough
U/t, the effective model is an SU(N ) Heisenberg model with
local spins in the fundamental representation of SU(N ) en-
dowed with real pairwise permutations and complex three-
site permutations. The Hamiltonian is a generalization of the
SU(2) model with scalar chirality [30, 31] and is defined by:

H = J
∑
〈i,j〉

Pij +K3

∑
(i,j,k)

(eiΦPijk + h.c.) (2)

where the sum over (i, j, k) runs over all triangular plaquettes,
and Pij and Pijk are circular permutation operators. To sec-
ond order, the amplitude of the pairwise permutation is simply
given by J = 2t2/U , while the 3-site permutation appears at
third order in perturbation theory with K3 = 6t3/U2. The
cases Φ = 0 and Φ = π with purely real positive [32] and
negative [33] three-site permutation have been addressed ear-
lier. In this Letter, we concentrate on the case of a purely
imaginary three-site permutation Φ = π/2 described by the
Hamiltonian

H = cos θ
∑
〈i,j〉

Pij + sin θ
∑

(i,j,k)

(iPijk + h.c.) (3)

with the parametrization J = cos θ and K3 = sin θ. We will
discuss the experimental prospects of realizing this Hamilto-
nian towards the end of the manuscript. It is interesting to note
that parent Hamiltonians for SU(N ) chiral spin liquids have
been proposed recently [34, 35]. While there are some struc-
tural similarities, it is not obvious that the spatially compact
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FIG. 1. Panel (a): Ground state energy per site as a function of θ for various N and Ns. Open symbols (full lines) denote ED (VMC) results.
(b): Quality of the VMC wave function as measured by the ratio EVMC/EED. (c): Energy splitting among the expected N singlet states
forming the ground space manifold of a SU(N ) CSL. (d) Energy gap from the ground state to the first excited singlet state which is not part of
the expected ground space manifold.

and physically more realistic Hamiltonian (3) features CSL
phases. It is the goal of this Letter to provide compelling nu-
merical evidence, based on large-scale Exact Diagonalizations
(ED) and Gutzwiller projected parton wave functions, that the
above Heisenberg Hamiltonian indeed features extended re-
gions of SU(N ) CSLs for all values of N = 3 to 9 considered
here.

Exact diagonalizations – We start by investigating finite
periodic triangular lattice clusters as a function of θ for vari-
ous values of N . We focus on the range θ ∈ [0, π/2] in the
following. θ > π/2 is likely to be dominated by ferromag-
netism, while θ < 0 yields the time-reversed, but otherwise
identical physics as −θ. For small values of N = 3, 4 we
used the standard ED approach employing all the space group
symmetries, while only considering the individual color con-
servation, corresponding to an abelian subgroup of SU(N ).
For all other N a recently developed ED approach by two of
the authors [36], exploiting the SU(N ) symmetry at the ex-
pense of spatial symmetries, is currently the only way to ad-
dress these systems within ED. Depending on N , the largest
system sizes Ns range from 21 to 27 lattice sites.

In Fig. 1(a) we plot the ED results for the energy per site of
the ground state as a function of θ for all considered N (open
symbols). While the curves for N . 5 look rather smooth at
first sight, it is visible that the energy per site displays kinks
around θ/π ∼ 0.05− 0.1 and at θ/π ∼ 0.35− 0.4 for N = 6
to 9. For comparison we plot the energy expectation value of
parameter-free Gutzwiller projected CSL model wave func-
tions for all values of N (full lines). We will discuss the
properties of these wave functions in a moment. Interestingly,
these model wave functions have very competitive energies,
especially in the θ region slightly above the first kink. For a
quantitative comparison we show in Fig. 1(b) the ratio of the
variational energy divided by the ED ground state energy. It
is impressive that for N beyond 3 the best ratio exceeds 0.98

for the system sizes considered. So the picture so far is that
the small and large θ regimes for all considered N are most
likely other phases, while the intermediate region could har-
bour CSLs.

SU(N ) CSLs are intrinsically topologically ordered: They
exhibit a non-trivial ground state degeneracy on the torus [27,
37] and fractional excitations. The ground state degeneracy on
the torus is expected to be N for these particular states with
N different abelian anyons [26, 27]. In our numerical sim-
ulations, we can detect this degeneracy by investigating the
low-energy spectrum on samples with a total number of lat-
tice sites Ns that is an integer multiple of N . In Fig. 1(c) we
display the energy spread ∆GS of these N expected ground
states for differentN as a function of θ. As a general trend we
observe that the splitting reduces significantly as we increase
N . On the other hand several samples still show a substan-
tial splitting. Naively one would expect a simple exponential
suppression of the splitting with system size, however in the
related context of fractional Chern insulators a more subtle
dependence of the ground space splitting on the actual shape
of the clusters has been observed and rationalized [38]. We
think that similar considerations apply here as well.

Finally we also measure the gap ∆singlet from the absolute
ground state to the first singlet level that is not part of the ex-
pected ground state manifold. This is a measure for the exci-
tation gap in the gapped CSL states. In Fig. 1(d), one observes
an approximate dome-shaped behaviour of this gap for all N ,
and furthermore this gap seems to depend only weakly on N .
The approximate region in θ where the N -fold ground state
degeneracy splitting is small compared to the excitation gap
(for large N ) is indicated as a shaded region in all the panels,
and indicates a rough stability region for the SU(N ) CSLs on
the triangular lattice. One should note however that the pre-
cise extent of the CSLs for small N is an open question at this
point.
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FIG. 2. VMC ground space degeneracy: ordered sequence of eigen-
values of the overlap matrix of Gutzwiller projected wave functions
with 30 random values of threaded flux. The overlap matrix has pre-
cisely N large eigenvalues for an SU(N ) CSL.

Variational parton approach – An appealing way to de-
scribe the SU(N ) CSLs is to use a parton-based mean field
approach [26, 27, 39–44], complemented with a Gutzwiller
projection. The idea is to fractionalize the elementary spin
degree of freedom into fermionic spinons (partons) with N
colors. For an exact description a dynamical gauge field needs
to enforce the physical constraint of one fermion per site. At
the mean-field level however it is sufficient to specify the band
structure and filling of the fermionic spinons. In the SU(N )
CSLs of interest here, the spinon band structure consists of N
bands, where the lowest band is completely filled for all N
colors and separated by a gap from the other bands. In ad-
dition this band is required to have Chern number ±1. For
the triangular lattice we use a Hofstadter-type tight-binding
Hamiltonian with a uniform flux of π/N per triangular pla-
quette [45], fulfilling the requirements on the band structure.
This mean-field state can now be turned into a valid spin wave
function by the application of an exact Gutzwiller projection,
enforcing the presence of exactly one fermionic spinon per
site. Such a wave function can be handled by Variational
Monte Carlo (VMC) techniques, and in particular one can eas-
ily calculate the energy of the Hamiltonian (3) on rather large
lattices. The VMC energies displayed in Fig. 1(a),(b) have
been obtained this way[37].

The next question is how the VMC approach is able to ac-
count for the non-trivial ground state degeneracy on the torus.
It turns out that by threading flux through the non-contractible
loops around the torus, one is able to span an N -dimensional
subspace of Gutzwiller projected wave-functions, with almost
identical local properties on finite lattices. From the viewpoint
of topological order this corresponds to a charge pumping
procedure, where one cycles through the N different ground
states by threading different anyonic flux through the interior
of the torus. These concepts have recently been explored in
the context of SU(2) CSL on several lattices [46–48]. We have
checked in Fig. 2 that the subspace of wave functions spanned
by using 30 different boundary conditions at the mean-field
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FIG. 3. Summed squared overlaps of the VMC model wave functions
with ED eigenstates for N = 3 and Ns = 12. The blue crossed
denote ED eigenstates, while the area of the filled red circles denotes
the total squared overlap on those eigenstates. Around θ/π ≈ 0.25
the summed overlaps on the lowest three ED eigenstates (degeneracy
1 + 2) account for over 75% of the total weight, while the ground
state alone is at 90%.

level leads to a robust rank-N overlap matrix, therefore cor-
roborating the expectation of an N -fold degenerate ground
state manifold in the thermodynamic limit also at the VMC
level.

Since the variational energies for SU(3) turned out not to
be very competitive, as shown in Fig. 1(a)/(b), we explicitly
calculated the overlaps of individual ED eigenstates of the
Hamiltonian (3) with the three orthogonal Gutzwiller wave
functions obtained on the same system size. In Fig. 3 we plot
the summed squared overlap of all three wave functions (area
of filled circles) with the ED eigenstates (crosses) as a func-
tion of θ. Here we consider a Ns = 12 site system, where the
momenta of the three ED ground states in the CSL phase are at
the zone center (one) and at the corners of the Brillouin zone
(twofold degenerate). Around θ = 0 the SU(3) triangular lat-
tice Heisenberg model is in a three-sublattice color ordered
state [49, 50], however in the region around θ/π ∼ 0.25, the
three lowest ED eigenstates indeed have sizeable overlap with
the VMC model wave functions, thereby underlining the pres-
ence of an SU(3) CSL for sufficiently large values of θ also for
N = 3.

Edge states – Another hallmark of chiral topological
phases is the presence of chiral edge modes in the energy spec-
trum of systems with a boundary. It has been understood that
the characteristic energy level structure of the edge excitations
as a function of the momentum along the boundary serves as
a fingerprint of the type of topological order realised in the
bulk [51]. The SU(N ) CSLs considered here are expected
to exhibit a chiral edge energy spectrum described by the
SU(N )1 Wess-Zumino-Novikov-Witten (WZNW) conformal
field theory (CFT) [27]. This is the same CFT that governs the
low-energy spectrum of well-studied one-dimensional critical
SU(N ) spin chains [34, 35, 52, 53].

In order to test this hypothesis numerically we choose to



4

SU(3) SU(4) SU(5) SU(6) SU(7) 
Ns=13 

C6

Ns=19 
C6

Ns=7 
C6

Ns=15 
C7 Ns=19

SU(8)

3

3
6

3
6

3
15

4
4

20
4

4

20

20

36

5
5

45 5

45

5
45

50

70

6

6

84 84

84

6

6

120

210

x2 x2

56

56

504

168

21
21
28

224
21
28
21

224

490

735

21

224

56

56

168

504
504

2800

56

168

1008

0 1 2

l-l
0

0 1 2

l-l
0

0 1 2

l-l
0

0 1 2

l-l
0

0 1 2

l-l
0

0 1 2

l-l
0
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emulate a disk geometry by considering the specific Ns = 19
site triangular lattice with open boundary conditions depicted
in the left panel of Fig. 4. Such a lattice might actually be built
in future ultracold atom experiments with optical lattices and
a tight confining potential. This sample still has a sixfold rota-
tion axis about the central site, yielding an angular momentum
quantum number which we use to plot the energy spectrum.
The energy spectrum of the disc has no topological ground
state degeneracy, but features gapless edge modes which typ-
ically propagate only in one direction. The precise multiplet
structure of the edge modes depends on the anyonic sector.
In our setup this sector can be simply labeled as a = (Ns
mod N). In Tab. I of the supplementary material we have
compiled the SU(N )1 WZNW CFT predictions for the dif-
ferent irreducible representations of SU(N ) which appear at a
given excitation energy, here qualitatively labeled by the ex-
cess angular momentum l − l0. In the remaining panels of
Fig. 4 we display the actual ED energy spectrum of the Hamil-
tonian (3) for a fixed value of θ/π = 0.25 for N = 3 up to 8
as a function of the angular momentum l − l0. For all N one
can clearly identify a branch of chiral excitations propagating
to the right. The analytical predictions are indicated by the di-
mensions of the SU(N ) irreducible representations. For all N
the numerical data for the first three sectors (l−l0 = 0, 1, 2) is
in full agreement with the analytical predictions. The splitting
between the multiplets at a given value of l is expected to van-
ish as Ns grows, and the spectrum should become linear with
a certain edge state velocity. The observed structure of the
edge excitations confirms the SU(N )1 WZNW CFT predic-
tions and thus strengthens the case for abelian SU(N ) CSLs
in the model Hamiltonian (3).

Experimental considerations – With the recent realiza-
tion of the Mott-crossover regime in 3D optical lattices with

fermionic Ytterbium atoms [54, 55] the future for strongly
correlated SU(N ) quantum magnetism is shining bright. Our
proposal for triangular lattices builds on ingredients which
have been demonstrated separately: the possibility to realize
Mott insulators in optical lattices, and to create static artificial
gauge fields in an optical lattice (for alkaline atoms) [56, 57].
Beside, working with the triangular lattice is a big advantage
because the 3-site permutation term is the first and only term
to appear to third order perturbation theory starting from the
Hubbard model with one particle per site, by contrast to e.g.
the square and honeycomb lattice, where they appear at or-
der 4 and 6 respectively, and are not the first corrections. The
chiral phase typically appears for θ ' 0.3, which, using the
perturbation expressions of J = 2t2/U and K3 = 6t3/U2,
corresponds to t/U ' 0.1. This might be small enough to
be still in the Mott insulating phase, and to ensure that higher
order corrections are negligible. In future studies one might
also relax the π/2 flux per plaquette condition, and explore
the extent of the expected stability region of the SU(N ) CSL
phases.

Several interesting questions need to be addressed in fu-
ture work. For example, is it possible to directly engineer the
required three site exchange terms in Hamiltonian (3) using
sophisticated quantum optics schemes? There is hope that the
current activity on lattice gauge-theory implementations will
bring techniques to address this question. Another intrigu-
ing question regards the detection of SU(N ) CSL edge states
in actual experiments, for example using spectroscopic tech-
niques for small droplets, or braiding protocols for the abelian
anyons [27].
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