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We reveal the existence of a new type of topological Josephson effect involving type II superconductors and
three-dimensional topological insulators as tunnel junctions. We predict that vortex lines induce an electromag-
netic variant of the Witten effect that is the consequence of the axion electromagnetic response of the topological
insulator. If an external magnetic field is applied perpendicular to the junction, the Witten effect induces an AC
Josephson effect in absence of any external voltage. We derive a number of further experimental consequences
and propose potential setups where these quantized, flux induced, Witten effects may be observed.

One distinguished feature of topological superconductivity
is that it hosts gapless boundary states in the form of Majo-
rana fermions, i.e., particle states that are their own antiparti-
cles [1]. One way of indirectly detecting Majorana fermions,
and therefore the topological nature of superconductivity in
the system, was proposed by Kitaev long time ago in the
framework of a simple, exactly solvable, model [2]. Kitaev
pointed out that a semiconducting wire with strong spin-orbit
coupling, where p−wave-like superconductivity is induced by
proximity-effect to an s−wave superconductor, could host un-
paired Majorana modes at its ends, provided the chemical po-
tential does not exceed the energy gap between the elementary
excitations. Within this framework, a tunnel junction between
two Kitaev wires would feature fused Majorana modes and
lead to a fractional (4π-periodic) Josephson effect. Since Ki-
taev’s seminal paper, several papers have discussed further ef-
fects and the possible use of Majorana fermions as the means
to realized topologically protected quantum computation [3].
Experimental evidence for a fractional AC Josephson effect
has been reported in a hybrid InSb/Nb nanowire [4], thus pro-
viding evidence for fused Majorana states.

Another possibility to realize a fractional Josephson effect
is having a topological insulator (TI) as a tunnel junction [5].
In this case, a fractional Josephson effect due to fused Majo-
rana fermions also emerges as a consequence of the proxim-
ity effect. Recently, the AC Josephson effect has also been
measured in this case using HgTe as the three-dimensional
insulator junction [6]. Despite the recent progress in the mea-
surement of Josephson effect phenomena related to Majorana
physics, the true topological character has yet to be clearly
demonstrated. For instance, it remains to be shown that non-
Abelian statistics can be realized in some way by means of
Josephson junctions featuring fused Majorana modes, which
would pave the way to implement quantum information pro-
cessing [7].

In this Letter, we show that another type of topologi-
cal Josephson effect is also present in SC-TI-SC junctions
(SC=superconductor), when an external magnetic field is ap-
plied perpendicular to the junction and the superconductor is
a type II one. We will show that the induced vortex lines act
as magnetic monopoles in the sense that they trigger a variant

of the Witten effect, which in a field theory setting endows
magnetic monopoles with a fractional electric charge [8]. In
our condensed matter setting the resulting electrical charge of
magnetic vortices is the consequence of the axion electromag-
netic response of the topological insulator [9]. This has a num-
ber of experimentally accessible consequences. As the vortex
lines perpendicular to the TI junction become electrically po-
larized they may trigger an AC Josephson effect in absence
of an external voltage. Furthermore, the Josephson frequency
will turn out to be quantized, as a consequence of a Berry
phase for the tunnel junction induced by the Witten effect.
This will, in turn, imply a peculiar behavior for Shapiro steps.
These Josephson-Witten effects are expected to be rather ro-
bust as they merely rely on magnetic fluxes transversing the
SC-TI boundary and do not require any further fine-tuning or
interplay between different order parameters.

—Electromagnetic variant of the Witten effect For a strong
three-dimensional TI, it was shown [9] that the electromag-
netic response leads to a so called axion term [10] in the ef-
fective electromagnetic Lagrangian,

LAxion =
e2θ

4π2 E · B, (1)

where units are such that ~ = c = 1. Generally, θ is a field,
the so called axion. Several properties are important in the
following [11]: (i) The value of θ is defined modulo 2π; (ii)
within the bulk θ is constant; (iii) For a uniform θ, the above
Lagrangian is a total derivative, yielding henceforth a surface
term in the action; and (iv) in the presence of time-reversal
symmetry (TRS), θ can either be 0 (the topologically trivial
case) or π: in particular for a TRS strong topological insulator
θ = π. However in the absence TRS, θ need not be quantized,
and a TI can adiabatically be transformed into a band insula-
tor. Since the axion term is a surface term, it does not changes
the field equations. However, it does change the boundary
conditions. This point is crucial and leads to the Witten effect
[8]: when magnetic monopoles are present the total electric
charge becomes fractionalized due to the magnetic monopoles
acquiring an electrical charge.

The Witten effect has been originally predicted for an O(3)
Higgs model, which has magnetic monopole solutions in the
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spontaneous symmetry breaking regime as demonstrated by ’t
Hooft and Polyakov [12]. However, in electrodynamics, mag-
netic monopoles have to be added by hand. Nevertheless, in
the presence of the axion term, the Witten effect also holds
[10] just as in the more general case originally discussed by
Witten. Furthermore, as we will show in the following, a form
of the Witten effect also holds for the case of vortex lines. To
this end, let us consider the simplest action for electrodynam-
ics with an axion term,

S =

∫
dt

∫
d3x

[
1

8π
(E2 − B2) +

e2θ

4π2 E · B − ρφ − j · A
]
.

(2)
In a system without boundaries, the Witten effect readily fol-
lows from the integral form of the Gauss law in the presence
of the θ-term,

4πQ =

∮
S

dS · E = 4π
(
q −

e2θ

4π2

∫
V

d3r∇ · B
)
, (3)

where where q is the electrical charge, Q the total charge and
the volume integral is bounded by the surface S . In standard
electrodynamics ∇ · B = 0, such that for constant θ nothing
happens, leading to Q = q. If we assume that the theory has
magnetic monopoles the standard Witten effect [8] arises. Us-
ing that the electrical charge q = ne (n ∈ Z) and the flux of a
single monopole ΦB = 2π/e the total charge is

Q = e
(
n −

θ

2π

)
. (4)

In the electrodynamics of condensed matter systems mag-
netic monopoles do not arise. However, the presence of a TI
surface prompts θ to change, and the the Gauss law in the form
∇ · E = 4πρ + (e2/π)∇θ · B needs to be used in order to ac-
commodate this change. Let us now specifically consider the
situation of a half-space (z < 0) occupied with a type II super-
conductor interfacing with a strong TI on the upper half-space
(z > 0); see Fig. 1-(a). An external field Hext perpendicu-
lar to the interface z = 0 generates magnetic vortices in the
superconductor. Inside the TI and near the interface there are
stray fields originating from the vortex lines with the boundary
condition that B = Hext for z → ∞. We have that θ(z) = 0 for
z < 0 (i.e., inside the superconductor), while θ is uniform in
the TI, including its surface at z = 0. For straight vortex lines,
the magnetic field inside the superconductor depends only on
the in-plane radial coordinate, and we find for the charge at
the the z = 0 interface,

Q = q +
e2

4π2

∫
d2rB(r)

∫ 0

−∞

dz
dθ
dz

= q +
e2θ

4π2 ΦB, (5)

where now ΦB = NvΦ0 = Nvπ/e is the total flux due to Nv

flux lines. Here, Φ0 = 2π/e∗ = π/e is the elementary flux
quantum associated with the Cooper pair (e∗ = 2e). With d
the thickness of the TI, a charge q − e2θ

4π2 ΦB is similarly found
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FIG. 1. (Color online) (a) Schematic view of a junction between a
strong TI (e.g. Bi2Se3, Bi2Te3 or strained HgTe) and a type II SC
(e.g. Nb,V, or a high Tc cuparate). The magnetic flux from the vor-
tex lines at the interface induces a charge fractionalization due to the
Witten effect. (b) Schematics of possible experimental setup to mea-
sure Josephson-Witten effect. The Witten effect acts on the vortex
lines rather than on magnetic monopoles, thus creating a potential
difference across the junctions.

at the (top) z = d SC-TI interface. This analysis implies that
when a TI shares an interface with a type II superconductor,
the flux of the vortex lines becomes electrically polarized by
the Witten effect.

At the interface of a SC and a strong TI with time-reversal
symmetry θ = π the Witten effect endows each magnetic flux
with a charge e/4. Since a vortex is a solitonic object, it is
allowed to carry a fractional electrical charge, similarly to the
situation found with magnetic monopoles (also solitonic ob-
jects) in the standard Witten effect. It is interesting that the
statistical properties of these fractionally charged fluxes might
in principle be determined by shot noise [13] or interferometry
[14] experiments.

Microscopically, the origin of this charge fractionalization
can be traced back in part to the origin of the axion term in the
Lagrangian of a three-dimensional TI [9]. In this case a well-
known argument shows that the electromagnetic response im-
plies a half-quantized Hall conductivity σxy for the surface
electrons [9]. Thus, we can adapt a simple argument by Mc-
Greevy [15] estimating the amount of charge ∆Q acquired by
a localized flux to our case as follows. Applying the Fara-
day law to the elementary flux quantum Φ0 = π/e of a vortex
and noting that there are circulating Hall currents at the vortex
core, we obtain,

Φ0 =
π

e
= −

∫
dt

∮
dr · E = −

∆Q
σxy

, (6)

where we have used that the transverse current in the vortex
core jr = σxyEϕ. Sinceσxy = −e2/(4π) (this is the value of the
half-quantized Hall conductivity, σxy = e2/(2h) when ~ = 1),
the above simple argument yields ∆Q = e/4.

The discussion above can be further elaborated to enable to
consider time-dependent magnetic fluxes, yielding another in-
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stance of the Witten effect. In this case the action (2) becomes

S =

∫
dt

∫
d3x

[
1

8π
(E2 − B2) − ρφ − J · A

−
e2

4π2∇ · (θE × A)
]
, (7)

where the total current density,

J = j −
e2

4π2 (∇θ × E) −
e2θ

4π2∇ × E. (8)

In the above equation the term ∼ (∇θ × E) contributes to the
Hall conductivity while the term ∼ θ∇ × E contributes to the
Witten effect. For example, if E is uniform and applied in
the x-direction parallel to the TI surface, we obtain the Hall
current along the y-direction,

jH
y =

e2E
4π2

∫ d

0
dz

dθ
dz

=
e2E
4π2 [θ(d) − θ(0)], (9)

where d is the thickness of the TI. On the other hand, if an
electric field is induced due to an external magnetic field ap-
plied perpendicular to the surface, the total electric current
flowing through one of the surfaces is given by,

dQ
dt

= −

∫
S

dS · j +
e2θ

4π2

∫
S

dS · (∇ × E)

=
dq
dt

+
e2θ

4π2

∮
C

dr · E =
dq
dt
−

e2θ

4π2

dΦB

dt
, (10)

where we invoked Faraday’s law. Eq. (10) thus indeed ex-
tends our Witten effect results to the time dependent domain.
This analysis implies that when a TI shares an interface with
a type II superconductor, the flux of the vortex lines becomes
electrically polarized by the Witten effect.

—Capacitance due to Witten effect The magnetic flux car-
rying a fractionalized charge due to the Witten effect high-
lights the interplay between topology and boundary condi-
tions, since the axion term is a total derivative. An imme-
diate consequence of this interplay is the modification of the
capacitance energy. One expects that due to the Witten ef-
fect a capacitor can become electrically charged by magnetic
fluxes in the plates. Indeed, an application of the Gauss law to
a parallel plate capacitor yields the magnitude of the electric
field,

E =
4π
Aε

(
q −

e2θ

4π2 qm

)
, (11)

where ε is the dielectric constant of the material filling the
capacitor, qm is the total magnetic monopole charge, and A is
the area of the plate. Thus, irrespective of the plate separation,
we obtain the voltage difference,

∆V =
1
C

(
q −

e2θ

4π2 qm

)
, (12)

where C is the usual capacitance of a parallel plate capacitor.
We see that for non-zero qm the voltage difference is nonzero

even if there are no electric charges in the capacitor. One im-
portant feature of this capacitor is that the monopole charges
in one plate are connected by vortex strings to the opposite
monopole charges on the other plate. The Witten effect im-
plies that this vortex string is electrically polarized.

—Josephson-Witten effect Having established that magnetic
monopoles and fluxes can generate an electrical potential dif-
ference in presence of a varying axion field, we consider
a SC-TI-SC Josephson junction in this context. Magnetic
monopoles are of course absent in this physical situation.
The Hamiltonian of a Josephson junction [16] features the
charging or capacitive energy, C(∆V)2/2 and the Josephson
potential energy, −EJ cos ∆φ. The voltage difference can
be related to the variation of particle number, ∆n, which is
semi-classically conjugate to the phase difference, ∆φ, via,
∆V = (2e/C)∆n. Thus [16],

HJ =
2e2

C
(∆n)2 − EJ cos ∆φ. (13)

For a SC-TI-SC Josephson junction, an additional surface en-
ergy has to be included due to the axion term, and the Hamil-
tonian of the junction modifies to,

HJ =
2e2

C

(
∆n +

eθ
8π2 ΦB

)2

− EJ cos ∆φ, (14)

since due to the θ-term a charging energy is induced when an
external magnetic field is applied perpendicular to the junc-
tion. As usual, ∆n is the Cooper pair number variation that
is conjugate to the phase difference ∆φ across the junction.
Therefore, i[HJ ,∆φ] = ∂t∆φ = 2e∆Vind with the induced po-
tential drop

∆Vind =
1
C

(
2e∆n +

e2θ

4π2 ΦB

)
. (15)

Since ΦB is quantized in multiples of Φ0 = π/e, we see
from Eqs.(14) and (15) that the original 2π-periodicity of θ,
which is intrinsic to TI electrodynamics [9], becomes a 8π-
periodicity, upon proximity with the superconductor. Indeed,
we obtain that for arbitrary Nv that both Eqs. (14) and (15) are
invariant under θ → θ + 8π, ∆n → ∆n − Nv. This periodicity
is also reflected in the excitation spectrum of the Hamiltonian
(14) in the case where the charging energy dominates over the
Josephson energy EJ . In this case an elementary second-order
perturbation theory calculation yields,

En(θ) ≈
2e2

C

(
n +

θ

8π
Nv

)2

+
(EJC)2/(2e4)

4
(
n + θ

8πNv

)2
− 1

, (16)

where n ∈ Z. For θ = 0 Eq. (16) just reduces to the per-
turbation solution of the two-dimensional Stark rotator. For
θ , 0 the problem is equivalent to one of a particle moving
on a ring with a magnetic flux Φ = θNv/4, with tunnel barrier
[17]. This equivalence implies that for Nv = 1 an electron go-
ing around the ring with a single vortex will effectively only
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pick up a flux θ/4, which in the case of a time-reversal invari-
ant system means a π/4 flux. From this point of view, gauge
invariance and the 8π periodicity of θ imply the invariance
of the spectrum (16) under the transformation, n → n + m,
θ → θ− 8πm/Nv. This result holds exactly, being independent
of the perturbative calculation, as it is a consequence of the
gauge invariance of the system.

Let us estimate the Witten effect contribution to the volt-
age drop from Eq. (15). Candidate materials are structures
involving either Bi2Se3-Vanadium or Bi2Te3-Niobium inter-
faces. In the absence of external voltages, the voltage drop
is due uniquely to the Witten effect induced by the vortices,
yielding ∆Vind = Nve/(4C). Generally, C represents the com-
bined capacitance between TI and superconductor. For a small
junction the capacitance is in the order of ∼ 1 pF [18]. A
magnetic field of ∼ 10 T gives rise to vortices with a typical
spacing of 100 nm, which then induce voltage drop ∼ 2 µV,
a drops that is comparable to those found in larger junctions
and which is easily within the experimental limit of detection.

The AC Josephson effect oscillation frequency exhibits an
additional contribution due to the θ-term. Thus, the total
frequency for the AC Josephson effect is ω = ω0 + ωθ,
where ω0 = 2eV0 is the usual Josephson frequency with
V0 = 2e∆n/C, and,

ωθ =
e3θ

2π2C
ΦB, (17)

is the contribution to the frequency which is induced by the
Witten effect. Thus, similarly to Shapiro steps [19], we
find a DC Josephson effect by tuning the voltage such that
ω0 = −ωθ. Using our estimate for the voltage drop at high
magnetic fields, we obtain ωθ ∼ 1 GHz. Thus, in the absence
of external voltage, a topological magnetoelectric contribution
is still present, implying the AC Josephson current,

IJ(∆φ, t) = 2eEJ sin (∆φ + ωθt) . (18)

The Witten effect has further important consequences if we
consider the Josephson effect in small junctions. To see this
let us consider the partition function of the Lagrangian LJ =

∆n∂t∆φ − HJ in terms of a path integral in imaginary time,

Z =

∫
D∆nD∆φe−

∫ β

0 dτ(i∆n∂τ∆φ+HJ ), (19)

where we have used the fact that ∆n is canonically conjugate
to ∆φ. Due to the periodicity of ∆φ, the above path integral is
calculated with a periodic boundary condition taking the form,
∆φ(β) − ∆φ(0) = 2πnW , nW ∈ Z is the standard winding num-
ber that arises in the partition function of small junctions [20]
and which is due to ∆φ being conjugate to the particle number
operator. By performing the shift ∆n→ ∆n−eθΦB/(8π2), Eq.
(19) acquires a phase factor, eieθΦB/(8π2)

∫ β

0 dτ∂τ∆φ, which con-
tains the integral over a total derivative. Due to the boundary
condition

θ =
8πm
Nv

, m ∈ Z, (20)

and the 8π periodicity of θ corresponds to the translation m→
m + Nv. This result implies,

ωθ =
(2e)2m

C
, (21)

leading to a quantized DC component. Thus, due to the Wit-
ten effect, the voltage is quantized in a way similar to Shapiro
steps [19]. This result modifies in turn the way the actual
Shapiro steps behave, since now the phenomenon will be char-
acterized by two integers. Indeed, by considering an addi-
tional AC voltage, V(t) = V0 + V1 cos(ω1t), the standard argu-
ment for Shapiro steps [16] implies the DC voltages,

Vnm =
nω1

2e
−

2me
C

, (22)

in which case the usual Shapiro step result is obtained for
m = 0. Eq. (22) leads to a charge lattice, Qnm = CVnm rem-
iniscent of the Schwinger result [21] generalizing the Dirac
quantization to dyons, namely, dipoles involving an electric
and a magnetic charge. Similarly to that case, we can express
the charge obtained from the voltage (22) in terms of modu-
lar transformations [22] describing a so-called S-duality [23].
There is also a similarity between Eqs. (22) and (12), when
the Dirac duality relation, qqm = 2π is accounted for.

A possible experimental setup to test the above prediction
on the quantization of Shapiro steps is shown in Fig. 1-
(b). The strategy to observe the result (22) is to measure the
I − V characteristics using microwave radiation and an exter-
nal magnetic field perpendicular to the junction. For the case
of a resistively shunted junction, I = Ic0 sin ∆φ + R−1(V +

2em/nW ) + CdV/dt, where Ic0 = 2eEJ is the critical current
in absence of the axion term. Thus, the small capacitance
regime is shown to obey the differential equation,

d∆φ

dt
= 2eIc0R

[
1

Ic0

(
I −

2me
RC

)
− sin ∆φ

]
, (23)

which yields the time-averaged voltage,

Vm = R

√(
I −

2me
RC

)2

− I2
c0, (24)

which implies a quantized critical current. Since the capaci-
tance is small we obtain for small I and Ic0 a quantized volt-
age, Vm ≈ 2me/C.

—Conclusions We have shown that new types of Joseph-
son effects can arise in tunnel junctions between type II su-
perconductors and strong topological insulators because the
axion electromagnetic response of the TI causes a Witten ef-
fect that endows magnetic fluxes at the SC-TI interface with
an electrical charge. This charge is e/4 per elementary flux
quantum. As vortex lines perpendicular to the SC-TI junc-
tion become electrically polarized they in turn generate an AC
Josephson effect in absence of an external voltage. Further-
more, the Witten effect contributes directly to the Josephson
frequency which in turn modifies the way the Shapiro steps
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behave, a phenomenon that is now characterized by two inte-
gers. One expects these Josephson-Witten effects to be rather
robust experimentally as they in the end only rely on magnetic
fluxes transversing the SC-TI boundary and do not require any
further fine-tuning.
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