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We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional
topological insulator. In the presence of a magnetization component along the bias direction, a tun-
neling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic
control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tun-
neling conductance. By changing the in-plane magnetization direction it is possible to change the
sign of both the longitudinal and transverse differential conductance without opening a gap in the
topological surface state. The transport in a topological insulator/ferromagnet junction can thus
be drastically altered from a simple spin-valve to an amplifier.

Exotic properties of three-dimensional topological in-
sulators (3D TIs) arise from their helical surface states,
described as 2D Dirac fermions with spin-momentum
locking [1]. Topological insulators have large spin-orbit
coupling (SOC) leading to striking manifestations of the
conservation of angular momentum from a colossal Kerr
rotation [2] and photocurrent control [3] to magnetiza-
tion switching [4]. The interplay between magnetism and
SOC in ferromagnet(F)/TI junctions provides a versatile
platform to study fundamental effects and spintronic ap-
plications [1, 4]. Previous tunneling studies have largely
focused on the longitudinal response [5–8] since a com-
mon expectation in tunnel junctions is that the trans-
verse (Hall) response is negligible.

In contrast to previous manifestations of the Hall ef-
fect, such as the anomalous [9, 10], tunneling anoma-
lous [11–13], and planar Hall effects [14], we propose an
unexplored tunneling planar Hall effect (TPHE) emerg-
ing in F/TI junctions (Fig. 1), qualitatively different from
these manifestations in terms of the relevant geometry
and the magnetization configuration. In particular, the
proposed effect is maximized for a planar magnetization
parallel to the applied bias, where other Hall effects van-
ish [15].

Unlike in conventional tunneling, a thick barrier with
TIs can still lead to a large conductance due to Klein tun-
neling [15]. We show that an asymmetry in the tunneling
conductance due to the in-plane barrier magnetization
enables efficient transverse (Hall) spin-valves. With spin-
momentum locking and a tunable resonant transmission,
these spin-valves can display a transverse negative differ-
ential (ND) conductance even in the limit of vanishing
applied bias, suggesting a path to amplifiers and other
active spintronic devices [18].

This peculiar behavior arises from asymmetric tunnel-
ing of electrons with opposite incident angles through
the barrier [Fig. 1(b)]. The finite tunneling planar Hall
conductance (TPHC) can be understood as the spin mis-
match between TI and F selecting electrons with positive
transverse velocity [19] to be transmitted more effectively
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FIG. 1. (a) Schematic setup. (b) Origin of the planar Hall
conductance and net Hall voltage, VH , due to asymmetric
tunneling. The circle sizes represent the asymmetry in trans-
mission probabilities arising from the interfacial mismatch of
spin directions (locked to the velocity). (c) Spin mismatch:
Fermi circles in the TI (upper Dirac cone) and the barrier
(lower Dirac cone, shifted by a proximity-induced exchange
splitting ∆x). In (b) and (c) violet (black) arrows denote the
electron spin orientation (direction of motion).

[Fig. 1(b)]. The interfacial spin mismatch results from
spin-momentum locking and a shift of the Dirac cone due
to the exchange splitting [Fig. 1(c)]. Translational sym-
metry along the y-axis yields an effective Snell’s law [20]
preserving the transverse momentum, while the longitu-
dinal momentum changes sign on the lower Dirac cone
(the group velocity points to its apex, see Ref. 15).
Our system is described by the effective Hamiltonian

Ĥ0 = vF (σ × p̂) · ez + (V0 −∆ · σ)h(x) (1)

with the barrier function h(x) = Θ(−x)Θ(x + d) for a
square (finite) barrier of width d and h(x) = dδ(x) for
the respective δ-barrier. Here, vF is the Fermi velocity
of the surface states (vF ≈ 6 × 105 m/s in Bi2Se3 [21]),
p̂ and σ denote vectors containing the momentum op-
erators and Pauli spin matrices [1], while ∆ and V0

describe the proximity-induced ferromagnetic exchange
splitting and an electrostatic potential barrier, respec-
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tively. A planar exchange field ∆ shifts the apex of the
Dirac cones from the origin to (−∆y/~vF,∆x/~vF)

T in
the kxky-plane. Therefore, for ∆y = 0 the longitudinal
(transverse) transport is even (odd) in ∆x. In Eq. (1),
we focus on F/TI junctions where the topological surface
states (TSSs) are decoupled from bulk states [15].
The conductance for a bias along the x-direction is

obtained from the eigenstates of Eq. (1) with energy E
and conserved momentum ~ky [Fig. 1(c)], Ψky

(x, y) =

exp(ikyy)Φ(x)/
√
2S with the surface area S and

Φ(x) =







χ+e
ikxx + reχ−e

−ikxx, x < −d,

lχ̃+e
ik̃+x +mχ̃−e

ik̃−x, −d < x < 0,
teχ+e

ikxx, x > 0

(2)

for the finite barrier. For the δ-barrier, the states
Φ(x < 0) and Φ(x > 0) are given by the first and
third lines of Eq. (2), respectively. Defining the an-
gle −π/2 ≤ θ ≤ π/2 as ~vFkx = |E| cos θ and
~vFky = |E| sin θ, the momenta are given by ~vFk̃± =

−∆y ± ~vFk̃x and the spinors by χ± = (1, b±)
T

and χ̃± = (1, b̃±)
T with b± = ∓i sgn(E)e±iθ, b̃± =

[

(|E| sin θ −∆x)∓ i~vFk̃x

]

/ (E − V0 −∆z), and

~vFk̃x(E, θ) =

√

(E − V0)
2 − (∆x − |E| sin θ)2 −∆2

z.

(3)
Carefully invoking the boundary conditions [15, 22] to

determine re, te, l, m in Eq. (2) yields the transmission

T (E, θ) =
1

1 +
(V0 sgn(E) sin θ−∆x)

2+∆2
z
cos2 θ

(~vF/d)
2 cos2 θ

sin2 Zeff

Z2
eff

, (4)

where Zeff = k̃x(E, θ)d for a finite barrier and Zeff =
√

V 2
0 −∆2d/(~vF) for a δ-barrier with ∆ =

√

∆2
x +∆2

z.
Here, T (E, θ) is independent of ∆y and asymmetric with
respect to θ for finite ∆x.
We focus on the case ∆ = |∆x|, ∆z = 0, while the

effects of finite ∆z are discussed in Ref. 15. The trans-
mission from Eq. (4) displays two qualitatively different
regimes: (i) oscillatory, with real Zeff as a consequence of
Klein tunneling in Dirac systems like graphene [23], and
(ii) decaying, with complex Zeff and typical for massive
low-energy systems described by Schrödinger’s equation.
A remarkable property of our system is that by control-
ling the magnetization and/or the top gate potential (re-
call Zeff depends on V0 and ∆) it is possible to switch
between the two regimes and produce very large differ-
ences in T (E, θ).
Such a tunable transmission can lead to a large

anisotropy for some incident angles. In the oscillatory
regime, in particular, we find from Eq. (4) that perfect
transmission is realized for

V0 sgn(E) sin θ = ∆ or Zeff(E, θ) = nπ, n = 1, 2, ... .
(5)
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FIG. 2. Dependence of the (a) longitudinal and (b) transverse
conductances on d for finite and δ-barriers. (c) Fermi circles in
the leads (inner circle) and barrier (outer circle). The arrows
denote the wave vectors of states with positive x-component
of the velocity and the vertical dashed line indicates the first-
order resonance condition. (d) Transmission T (εF, θ) of a
finite barrier as a function of d and θ.

Here, the first equality describes perfect transmission at
each interface due to the absence of any spin mismatch
between TIs and F. The second equality is a resonance
condition for constructive interference when a multiple of
the longitudinal wavelength 2π/k̃x matches d [24].
Using Eq. (4), the conductance at zero temperature,

for a bias applied in the x-direction, reads as [15]

Gxx/yx =
e2

h

|εF|Dx/y

2π~vF

π/2
∫

−π/2

dθ T (εF, θ)

{

cos θ
sgn(εF) sin θ

,

(6)
where Dx/y is the width perpendicular to the current
flow in the x/y-direction and -e is the electron charge.
We normalize Gxx/yx to the Sharvin conductance (trans-

parent barrier), G0x/y =
(

e2/h
)

|εF|Dx/y/ (π~vF) [25].
For a δ-barrier and |V0| ≫ ∆, Eq. (4) can be expanded

up to the lowest order in ∆/V0,

Gxx/G0x ≈ sec2 Z0 − tanh−1 |cosZ0| tan2 Z0/ |cosZ0| ,(7)
Gyx/G0y ≈ (π∆/2V0) |sinZ0| (1− |sinZ0|)2 / cos4 Z0, (8)

where Z0 = V0d/(~vF) [26]. These expressions capture
the oscillatory behavior of Gxx/yx and reveal that at the
resonance condition, Zeff ≈ Z0 = nπ, Gxx = G0x reaches
perfect transmission, whereas Gyx vanishes. Such a qual-
itative behavior is corroborated by the full δ-barrier de-
pendence of Gxx/yx on d, shown in Figs. 2(a) and (b).
Even though the δ-barrier provides a good approxima-
tion for small d, it fails to describe the appearance of
Gyx < 0 and the increase of its amplitude with d. Hence,
we will focus on the finite barrier and employ the δ-model
only to obtain analytical approximations.
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The main features observed in Figs. 2(a) and (b) can
be understood by analyzing the phase space available
for tunneling shown in Fig. 2(c) for V0 > εF > 0.
Here, the inner (outer) circle with radius |εF|/(~vF)
[|V0 − εF|/(~vF)] represents the k-space Fermi circle in
the leads (barrier) and the arrows indicate the Fermi
wave vectors of the scattering states available for trans-
port. As discussed in Fig. 1, the asymmetry between
the scattering states with ky > 0 (0 < θ < π/2) and
ky < 0 (−π/2 < θ < 0) due to ∆ causes a finite TPHC.
For illustration, we show in Fig. 2(d) the transmission,
T (εF, θ), of a finite barrier as a function of d and θ. The
asymmetry of T (εF, θ) with respect to θ = 0 due to the
first equality in Eq. (5) can clearly be seen, which results
in the appearance of a nonzero Gyx after the integration
in Eq. (6). On the other hand, the oscillatory behavior
with d in Fig. 2(d) is governed by sin2 Zeff in Eq. (4).

When |V0 − εF| > ∆ + |εF|, the Fermi circle of the
leads is inside that of the barrier as shown in Fig. 2(c).
Then, for each Fermi vector in the leads, there is one
available in the barrier and the system is purely in the
Klein tunneling regime. The deviations between the fi-
nite and δ-barrier models with increasing d originate from
the angular dependence of Zeff and the ensuing asymmet-
ric resonances in the case of a finite barrier, explained by
Fig. 2(c): With increasing d, the first-order resonance
[n = 1 in Eq. (5)] moves towards smaller kx-values and,
at d ≈ 46 nm, it crosses the Fermi circle of the barrier.
The first states reaching the resonance are those with
ky > 0, causing an increase in Gyx compared to the δ-
barrier model. As d is further increased, the resonance
moves to states with ky < 0 producing a fast decrease
in Gyx, which, eventually, becomes negative. In thicker
barriers, the trend repeats periodically with d each time
a new resonance becomes relevant. This occurrence of
multiple resonances (n = 1, 2, etc) results in the increase
of the amplitude of the TPHC for even larger values of d
(if |εF| ≪ |V0|) as shown in Fig. 2(b).

The interplay between V0 and ∆ and the appearance
of a TPHC are illustrated by Fig. 3 for (a) Gxx, (b) Gyx,
and (c) their ratio for a finite barrier with d = 50 nm
and a fixed εF. Figures 3(a) and (b) clearly show the
transition from a region of oscillatory Klein tunneling
(|V0| > ∆+ 2εF ≈ ∆) to a region of decaying tunneling
(|V0| < ∆). Such a transition can be understood by re-
sorting to the analysis of the Fermi circles. As discussed
above, the scheme in Fig. 2(b) corresponds to the Klein
tunneling regime, but increasing ∆ will shift up the Fermi
circle of the barrier, which at ∆ = V0−2εF starts to cross
the Fermi circle of the leads. Therefore, increasing ∆
above that value results in the formation of an interme-
diate regime in which only a part of the available states
can undergo Klein tunneling, while the other experiences
decaying tunneling. The contrast between the two tun-
neling mechanisms becomes extreme when ∆ = V0 − εF.
In such a situation, as shown in Fig. 3(d), Klein tunnel-
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FIG. 3. Dependence of the (a) longitudinal and (b) transverse
conductances as well as (c) of their ratio on V0 and ∆ for a
finite barrier with d = 50 nm, εF = 1 meV, and vF = 6.0 ×
105 m/s. Green lines: boundaries of regions with negative
conductance. (d) Same as in Fig. 2(c), but for larger ∆.

ing occurs only for states with ky > 0, while those with
ky < 0 undergo decaying tunneling. This strong asym-
metry in the tunneling favors the transmission of states
with larger ky values and results in a remarkably large ra-
tio between the TPHC and the longitudinal conductance.
As shown in Fig. 3(c), such a ratio can even exceed 1,
implying large Hall angles, θH = arctan(Gyx/Gxx) ≈ 75◦

for the parameters chosen here. Such giant values of the
Hall angle are comparable to those recently detected in
a 3D magnetic TI [27]. Green lines in Figs. 3(b) and (c)
indicate negative values of the TPHC, whose origin is the
same as in Fig. 2(c).
The δ-barrier model enables us to obtain an analytical

expression for the giant Hall angle. Indeed, for |V0| ≈ ∆,

tan θH =
Gyx

Gxx
=

π|Z0| (|Z0| − 1)
2

2 [(2ln|Z0| − 1)Z2
0 + 1]

, (9)

which increases with |Z0|, even though Gxx and Gyx in-
dividually decrease (we assume Dx = Dy).
We next examine the current-voltage (I-V ) character-

istics and reveal the appearance of a negative differential
(ND) conductance. While for |V | ≪ |εF|, Eq. (1) can
be used to calculate the current, bias-induced changes of
the electrostatic potential have to also be taken into ac-
count in general. For all I-V calculations [15], we model
this effect by adding the step-like [28] potential profile
V [Θ(−x− d) + Θ(−x)] /2 to Eq. (1) and computing the
transmitted currents for this system numerically. As a
consequence, a ND longitudinal conductance observed in
single barrier graphene transistors [29] appears also in
our system [inset of Fig. 4(a)]. Surprisingly, the trans-
verse current, Iy , also shows a change of sign in its slope
[segment from A to B in Fig. 4(b)], the signature of a ND
Hall conductance (NDHC), even at low V and within a
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FIG. 4. Bias dependence of the (a) longitudinal and (b) trans-
verse currents for a finite barrier and different V0. Assuming
Dx = Dy = 10 µm, both currents are given in units of I0 = 12
µA. (c) Same as in Fig. 2(c), but with thickened Fermi circles
accounting for a finite energy window around εF. (d) T (E, θ)
for V0 = 105 meV. The inset in (a) shows the appearance of
a ND Gxx for V0 = 105 meV at high bias.

range in which the differential longitudinal conductance
remains positive [Fig. 4(a)].

The appearance of a NDHC is exemplified for V0 = 105
meV in Fig. 4(b) with the corresponding transmission
T (E, θ) displayed in Fig. 4(d). Here, the key observa-
tion is that in the Klein tunneling regime, the asymme-
try of the resonances with respect to θ = 0 depends on
the energy. Indeed, as depicted in Fig. 4(d), for differ-
ent energies the resonances appear in the region ky < 0,
or ky > 0, or in both. This behavior is explained in
Fig. 4(c), where the Fermi circles of the leads and barrier
have been thickened to account for the energy window
from EA (solid circles) to EB (dashed circles) around the
Fermi energy, εF = 40 meV. The vertical lines marked
by n = 1 and n = 2 indicate the resonance condition
Zeff(kx, ky) = nπ as in Eq. (5). Open and full (yellow)
dots represent the resonances in Fig. 4(d) at EA and EB,
while crossed dots represent resonances forbidden by the
conservation of ky . The nonmonotonic Iy-V character-
istic in Fig. 4(b) follows from the positions of the reso-
nances: The local maximum A emerges as the relevant
energy window between εF and εF+eV starts to cross the
resonance at EA for a ky < 0 [Figs. 4(c) and (d)] resulting
in a reduced Iy with V . This resonance is compensated
for as another resonance favoring ky > 0 is reached at
EB [Figs. 4(c) and (d)], giving rise to the local minimum
B and subsequent increase of Iy in Fig. 4(b).

As shown in Fig. 4(b), the NDHC present for V0 = 100
meV and V0 = 105 meV is suppressed at V0 = 50 meV,
suggesting the possibility of controlling the NDHC by
gate-tuning the barrier. Moreover, the Iy-V characteris-
tic for V0 = 105 meV resembles that of a typical active

ND resistor, which is unusual for tunneling systems [30].
Despite the simplicity of a single ferromagnetic region,

our system exhibits a variety of functionalities expected
to require more complex spintronic devices [31, 32]. In
addition to a spin-valve operation for magnetic sensing
and storing information, shown in Figs. 4(a) and (b), pos-
itive, negative, and ND conductances can be tuned by
properly adjusting the barrier potential, suitable for pro-
cessing information. Such different behaviors in the same
system are attractive for potential applications in recon-
figurable devices operating as feedback oscillators, active
filters, modulators, and amplifiers [33]. These functional-
ities can be alternated both by the barrier potential and
in a nonvolatile way using the magnetization orientation.
Our findings, expressed using Bi2Se3 parameters, could

also be detected in other, more suitable, TIs to avoid the
coexistence of bulk and TSSs at the Fermi level, even
after adding a magnetic region [34, 35]. Alloying can
help to tune the Fermi level inside the bulk bandgap in
(Bi,Sb)2Te3, (Bi2,Sb)(Te3,Se), or Tl(Bi,Sb)Te2 [36–39],
while gating strained HgTe or capped Bi2Te3 can isolate
TSSs [40, 41]. Recent experiments imply a dominant
role of TSSs in junctions with magnetic regions, such
as YIG/(Bi,Sb)2Te3 with an independent tuning of elec-
tronic properties and proximity-induced magnetism in
TIs [42]. Magnetic proximity effects have been observed
even at 300 K in EuS/Bi2Se3 or (Bi,Mn)Te [43, 44].
To realize magnetic proximity effects for the in-

plane transport, magnetic insulators are desirable. This
precludes current flow in the more resistive F region
[Fig. 1(a)] and minimizes hybridization with the TI to en-
able a gate-tunable proximity-induced exchange splitting
in the surface states. However, as shown by the example
of tunable magnetic proximity effects in graphene [45],
one could instead employ ferromagnetic metals, sepa-
rated by an insulating region from the TI.
Even in the presence of additional states, such as

Rashba 2D states, a finite TPHE can still be expected.
Those states will, in general, also exhibit a spin mismatch
and thus contribute to the transverse Hall voltage, po-
tentially competing with the TSSs [15]. Nevertheless, ex-
periments on current-induced spin polarization, suggest
that these two contributions are inequivalent and their
relative significance can be tuned by changing the posi-
tion of the Fermi level [46–48]. Future work could involve
complementary first-principles transport studies to quan-
tify the influence of additional topologically trivial states
and studying the role of phonons, shown to profoundly
affect transport in TIs [49].
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