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Near a quantum-critical point in a metal strong fermion-fermion interaction mediated by a soft
collective boson gives rise to incoherent, non-Fermi liquid behavior. It also often gives rise to
superconductivity which masks the non-Fermi liquid behavior. We analyze the interplay between
the tendency to pairing and fermionic incoherence for a set of quantum-critical models with effective
dynamical interaction between low-energy fermions. We argue that superconducting Tc is non-zero
even for strong incoherence and/or weak interaction due to the fact that the self-energy from dynamic
critical fluctuations vanishes for the two lowest fermionic Matsubara frequencies ωm = ±πT . We
obtain the analytic formula for Tc which reproduces well earlier numerical results for the electron-
phonon model at vanishing Debye frequency.

Introduction. The interplay between superconduc-
tivity and non-Fermi liquid behavior in metals is one of
most fascinating issues in the modern physics of corre-
lated electron systems [1–18] A generic metallic system
in D > 1 is a Fermi liquid with coherent quasiparticles at
low energies. This coherence is destroyed if the system
is brought to a quantum-critical point (QCP), beyond
which it develops an electronic order in spin or charge
channel. At a QCP fluctuations of the order parameter
become massless. In D ≤ 3, the four-fermion interac-
tion, mediated by these massless fluctuations, destroys
fermionic coherence at T = 0, either at specific hot points
on the Fermi surface [4, 15, 19, 20], if the order has a fi-
nite momentum, or everywhere on the Fermi surface, if
the order develops with q = 0 (Ref. 21). The same mass-
less fluctuations, however, also mediate the pairing inter-
action, and if this interaction has an attractive angular
component the system can develop a superconducting in-
stability at a finite T , before a QCP is reached. A dome
of superconductivity above a QCP prevents a non-Fermi
liquid, QC behavior from extending down to the lowest
energies.

The existence of superconductivity near a QCP is
not guaranteed, however, because strong fermionic self-
energy acts against pairing. There are two effects from
the self-energy. First, at T 6= 0 the self-energy from static
(thermal) fluctuations acts as an impurity and may cause
pair-breaking. This is crucial for spin-triplet supercon-
ductivity, for which thermal self-energy acts as a mag-
netic impurity [22], but not for spin-singlet superconduc-
tivity, for which it acts as a non-magnetic impurity and
its singular contribution cancels out by Anderson theo-
rem [23]. In this paper we consider spin-singlet pairing

and neglect the contribution from thermal fluctuations.
Second, already at T = 0 the self-energy produces strong
upturn mass renormalization and shrinks the range of a
coherent fermionic behavior. Both these effects are detri-
mental to superconductivity.

The pairing amplitude and the self-energy come from
the same underlying interaction mediated by a soft bo-
son, hence the two are generally of the same order. Zero-
temperature studies of specific models in D = 2 and in
D = 3 − ε have shown [3–5, 8–10, 14] that supercon-
ductivity does develop at a QCP, however these studies
also hinted [2–4] that the pairing at a QCP is a thresh-
old problem and may disappear if the self-energy gets
enhanced compared to the pairing amplitude. A recent
study [16] made this explicit by extending a model in
D = 3 − ε to large N in such a way that the self-energy
gets enhanced, while the pairing amplitude remains in-
tact. The authors of Ref. 16 performed T = 0 analysis
and argued that there exists a critical N above which the
pairing does not develop because decoherence, caused by
strong self-energy, wins over the tendency to pairing due
to an attraction.

In this communication we and analyze the same pair-
ing problem, but at a non-zero T . Our result is different
from Ref. 16 and earlier work by some of us (Ref. 3) –
we argue that superconducting Tc is finite at arbitrary
N . The reason is that the competition between the self-
energy and the pairing interaction at a finite temperature
is qualitatively different from that at T = 0. Namely, at
a finite T the Matsubara self-energy Σ(ωn) is a discrete
variable, defined at a set of ωn = πT (2n + 1). It still
large for all n 6= 0,−1, but at the two lowest Matsubara
frequencies ωn = ±πT it vanishes if we neglect the contri-
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bution from static bosonic fluctuations. [24] At the same
time, the pairing interaction χ(Ωm), also taken without
the static part (i.e., at bosonic Ωm = 2πTm,m 6= 0) is
not reduced at Ωm = πT − (−πT ) = 2πT compared to
χ(Ωm) at other Ωm. As a result, the pairing interac-
tion between fermions with ωn = ±πT is strong, while
the competing contribution from the self-energy is ab-
sent. Although this holds only for the two Matsubara
frequencies, we show that this is sufficient to render Tc
finite. Moreover, Tc is not small and has a power-law
dependence of the coupling constant, which is stronger
than than the logarithmical divergence in BCS theory,
although the latter is obtained by summing up an infi-
nite set of Matsubara points.

In broader terms, we argue against the commonly used
procedure[3, 4, 8–10, 14, 16] to obtain Tc at a QCP by
computing the pairing susceptibility χpp(ω) at T = 0,
associating the superconducting region with the range of
N where χpp(ω) becomes negative below some ω∗, and
identifying Tc with O(ω∗). We argue that Tc has to be
determined from the actual calculations at a finite T , and
Tc generally does not scale with ω∗, except for special
cases like models in D = 3− ε and N = O(1).

To be specific, our conclusion holds for a set of QC
models with dynamical interaction between fermions, for
which the Eliashberg approximation [25] is valid. Within
this approximation, the momentum integration in the
gap equation can be carried out explicitly, and the anal-
ysis of superconductivity reduces to a set of equations
for the frequency dependent pairing vertex Φ(ωm) and
fermionic self-energy Σ(ωm), both originating from the
effective, momentum-averaged interaction χ(ωm − ω′m).
We consider a generic case of χ(Ωm) = (g/|Ωm|)γ , where
g is the effective fermion-boson coupling. We list specific
examples of different γ below. In particular, γ = 2 corre-
sponds to much studied strong coupling limit of electron-
phonon interaction [1, 29, 31, 32]. We argue that Tc is
non-zero for any γ, even if the self-energy is enhanced af-
ter a proper extension of the model to large N , as in [16].
Moreover, at large N , Tc ≈ [g/(2π)]/N1/γ ≈ 0.16g/N1/γ

is fully determined by the two lowest Matsubara frequen-
cies. At N = 1 this formula yields Tc ≈ 0.16g. This value
is very close to Tc ≈ 0.18g obtained numerically for γ = 2
(Refs. 28 and 29). which implies that Tc for QC electron-
phonon problem is predominantly determined by just the
two lowest Matsubara frequencies.

The model. We consider a system of fermions at
the boundary between a Fermi liquid state and a state
with a long-range order in either spin or charge chan-
nel (ferromagnetism, nematic order, spin/charge-density-
wave, etc). At a QCP, the propagator of a soft boson
becomes massless and mediates singular interaction be-
tween fermions. Like we said, we treat this interaction as
attractive in at least one pairing channel. This is true for
QCP towards density-wave instabilities [30], but we cau-
tion that this is not always the case – e.g., for fermions

at the half-filled lowest Landau level, long range current-
current interaction mediated by gapless gauge fluctua-
tions is repulsive in all channels [14].

We assume, following earlier work [3, 4, 7, 10, 13–
16, 26, 27] that bosons can be treated as slow modes
compared to fermions, i.e., the Eliashberg approxima-
tion is valid. Within this approiximation one can explic-
itly integrate over the momentum component perpendic-
ular to the Fermi surface reduce the integral equations
for the self-energy Σ and the pairing vertex Φ to the
set for Σ(kF , ωm) and Φ(kF , ωm) on the Fermi surface.
We will be interested in the solution for Tc, hence we
set Φ(kF , ωm) to be infinitesimally small and approxi-
mate Σ(kF , ωm) by its normal state value. We make one
additional approximation – assume that the dependence
of Φ(kF , ωm) on ωm and on on the momentum direc-
tion along the Fermi surface can be factorized, i.e. that
Φ(kF , ωm) = fΦ(kF )Φ(ωm), where fΦ has the symmetry
of the corresponding superconducting state [4, 18], and
neglect the momentum dependence of Σ(kF , ωm). Un-
der this approximation, the integration over momentum
component along the Fermi surface can be done explic-
itly [4, 15], and the set of equations for Tc reduces to
the integral equation for Φ(ωm) and the equation for the
normal state self-energy Σ(ωm):

Φ(ωm) = gγ

N
πT

∑
m′ 6=m

Φ(ωm′)
|ωm′ + Σ(ωm′)|

1
|ωm − ωm′ |γ

,

Σ(ωm) = gγπT
∑
m′ 6=m

sign(ωm′)
|ωm − ωm′ |γ

, (1)

where we incorporated the overall factors from the inte-
gration over momentum into g. Like we said, we neglect
the terms with m = m′ in Eq. (1) because for spin-singlet
pairing such terms cancel out between Φ(ωm) and Σ(ωm)
We discuss this in more detail in Ref. 33. The overall
factor 1/N is the result of extending the model to an
SU(N) global symmetry which involves both fermions
and bosons[16]. We treat N as a parameter. Our goal is
to understand whether there is a critical N above which
Tc = 0, i.e. the normal state extends down to T = 0.

Models described by Eq. (1) include a model for color
superconductivity [5] (γ = 0+, χ(Ωm) ∝ log |ωm|), mod-
els for spin- and charge-mediated pairing in D = 3 − ε
dimension [10, 14, 16] (γ = O(ε) � 1), a 2D pairing
model [35] with interaction peaked at 2kF (γ = 1/4),
2D models for pairing at a nematic/Ising-ferromagnetic
QCP [2, 17, 22] (γ = 1/3), a 2D hot-spot model for pair-
ing at the (π, π) SDW QCP [3, 4, 36, 37] and at a 2D
CDW QCP [32, 38], 2D models for pairing by undamped
fermions (γ = 1), the strong coupling limit of phonon-
mediated superconductivity [1, 28, 29], and models with
parameter-dependent γ (Refs. 8 and 9).

The argument for the threshold. To set the
stage for our analysis, we briefly display the argument
for the existence of a threshold in N for Tc. The argu-
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FIG. 1. Left: The plot of the function Ψγ(β) for γ = 0.3.
Right: the solution of the equation ((1 − γ)/2N)Ψγ(β) = 1.
For large N , β is real, as in perturbation theory (red line),
i.e., superconductivity does not develop. For N < Ncr, β =
γ/2 ± iβ̄ is complex (blue line). For a complex β, Φ(ωm) is
oscillatory in frequency, implying that Tc is finite.

ment is based on the analysis of the pairing susceptibility
at T = 0 for 0 < γ < 1 (Refs. 3 and 16). At T = 0
the self-energy has a non-Fermi liquid form: Σ(ωm) =
|ωm|1−γωγ0 sign(ωm), where ω0 = g[2/(1− γ)]1/γ . Substi-
tuting this Σ(ωm) into the equation for Φ(ω) and adding
up a bare Φ0, one can compute the T = 0 pairing sus-
ceptibility χpp(ωm) = Φ(Ωm)/Φ0 at ωm < ω0 order by
order in 1/N . The building block for series for χpp(ωm)
is
∫
dωm′1/(|ωm′ − ωm|γ |ωm′ |1−γ), where the first term

comes from the interaction and the second from the self-
energy. The integrand scales as 1/|ωm′ | at ωm′ > ωm,
hence the series for χpp(ωm) are logarithmical. At N � 1
the coupling is weak and one can just sum up the series
of leading logarithms, like in BCS theory. However, this
analogy does not go further because in our case, each
logarithm is cut by ωm rather than by T and the summa-
tion of the logarithms yields χpp(ωm) = 1 + α log ω0

|ωm| +
α2

2

(
log ω0
|ωm|

)2
+ α3

6

(
log ω0
|ωm|

)3
+... = (ω0/|ωm|)α, where

α = (1 − γ)/N . This susceptibility is positive i.e. the
summation of the leading logarithms does not give rise
to pairing.

This line of reasoning is developed further by solv-
ing for the susceptibility beyond the logarithmical ap-
proximation. The 1/ωm′ scaling of the kernel suggests a
power-law form Φ(ωm) ∝ (ω0/|ωm|)β at ωm < ω0. Sub-
stituting this into (1) and evaluating the integrals, we ob-
tain an equation on β of the form (α/2)Ψγ(β) = 1, where
Ψγ(β) = Γ(β)Γ(γ−β)

Γ(γ) +Γ(1−γ)
(

Γ(β)
Γ(1−γ+β) + Γ(γ−β)

Γ(1−β)

)
. We

plot Ψγ(β) in Fig. 1. Solving for β as a function of
α and γ and choosing the branch which gives β ≈ α
at small α, consistent with logarithmical perturbation
theory, we find that β increases with α, reaches the
value γ/2 at a critical αcr = (1 − γ)/Ncr, and at larger
α (i.e., smaller N) becomes complex: β = γ/2 ± iβ̄,
where β̄ ∝ (α − αcr)1/2 ∼ (Ncr − N)1/2. As the con-
sequence, χpp becomes an oscillating function of ωm:
χpp(ωm) ∝ (ω0/|ωm|γ/2) cos(β̄ log(ω0/|ωm|) +ψ0), where
ψ0 is an arbitrary phase. Oscillations of the pairing sus-

ceptibility cannot be obtained within a perturbation the-
ory and their presence was interpreted as the sign that
the system has already underwent a pairing instability at
some finite Tc. To obtain Tc, earlier works used T = 0
form of χpp(ωm) and identified Tc with the largest ωm at
which χpp(ωm) first becomes negative. At α ≥ αcr, when
β is small, this yields [3, 16, 39] Tc ∼ ω0e

−a/(Ncr−N)1/2 ,
where a = O(1).

Finite T analysis. We now perform the actual anal-
ysis at a finite T and argue that it yields a result dif-
ferent from the one at T = 0. Namely, we argue that
Tc is non-zero for any N and only tends to zero when N
tends to infinity. We show that this result originates from
the vanishing of the self-energy at Matsubara frequencies
ωm = ±πT . The special role of the lowest Matsubara
frequencies cannot be detected in the T = 0 analysis in
which Matsubara frequency is a continuous variable.

Vanishing of the self-energy Σ(ωm = ±πT ) can
be readily seen from Eq. (1). We have Σ(πT ) =
[g/(2πT )]γπT

∑
m′ 6=0 sign(2m′ + 1)/|m′|γ , and the sums

over positive and negative m′ cancel each other. The
same holds for ωm = −πT . For any other m ≥ 1,
Σ(ωm > 0) ∼ ωm(g/(2πT ))γ � ωm, i.e at low T the self-
energy at |ωm| 6= πT well exceeds the bare ωm term in
the fermionic propagator. Note in passing that the van-
ishing of Σ(ωm = ±πT ) in our analysis does not actually
imply that at this frequency a fermion is a free quasipar-
ticle, because we eliminated from Σ(ωm) the contribution
from static critical fluctuations (the m = m′ term in in
Eq. (1)). Such contribution is irrelevant for the pairing,
but it is parametrically larger than T near a QCP, hence
the full self-energy has a non-Fermi liquid form even at
ωm = ±πT .

To make our point about Tc, we consider large N and
small T . Neglecting ωm compared to the self-energy for
all m except m = 0 and m = −1, using the symmetry
conditions Φ(ωm) ≡ Φm = Φ−m−1 and Σ(ωm) ≡ Σm =
−Σ−m−1, and introducing Φ̄m ≡ Φm/(πTKT ), Σ̄m ≡
Σm/(πTKT ), where KT = [g/(2πT )]γ � 1, we re-write
the gap equation in (1) as a set of coupled equations for
Φ̄m=0,−1 and Φ̄m>0:

Φ̄0 = KT

N
Φ̄−1 + 1

N

∑
m>0

Φ̄m
Σ̄m

[
1
mγ

+ 1
(m+ 1)γ

]

Φ̄m>0 = KT

N

[
Φ̄0

mγ
+ Φ̄−1

(m+ 1)γ

]
+ 1
N

∑
m′>0,m′ 6=m

Φ̄m
Σ̄m

[
1

|m−m′|γ
+ 1

(m+m′ + 1)γ

]
(2)

We distinguish Φ̄0 and Φ̄−1 in (2) only for illustrative
purposes. In fact, the two are equal, Φ̄0 = Φ̄−1.

At vanishing 1/N Eq. (2) has a solution at KT = N ,
i.e. at T = Tc = (g/2π)/N1/γ . Indeed, the first equation
in (2) is satisfied, while the second one determines Φ̄m for
all m > 0 in terms of Φ̄0: Φ̄m>0 = Φ̄0

[
1
mγ + 1

(m+1)γ

]
.
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FIG. 2. Superconducting Tc, obtained by solving the gap
Eq. (2) numerically (labeled as “actual”), vs. the analytical
result from Eq. (3). Upper panel: γ = 0.1, lower panel: γ = 2.
In both cases the analytical Tc perfectly matches the numer-
ical one at large N . For N = O(1), the numerical solution
yields much larger Tc than Eq. (3) for γ = 0.1, but for γ = 2
numerical and analytical results remain close even for N = 1.

Plugging this Φ̄m>0 into the first equation in (2), we
obtain Tc with 1/N correction (see Ref. 33 for details)

Tc ≈
g

2π
1

N1/γ

(
1 + δγ

Nγ

)
, (3)

where δγ =
∑
m>0 [1/mγ + 1/(m+ 1)γ ]2/Σ̄m is a num-

ber of order one. We see that Tc is non-zero for any N ,
i.e., no matter how strong is the self-energy at Matsub-
ara frequencies ωm with m 6= 0,−1. We also see that
superconducting Tc is predominantly determined by the
two lowest Matsubara frequencies, for which the pairing
interaction is strong, but the self-energy vanishes. This
new understanding is very different from the previous
one that superconductivity at a QCP originated from the
pairing of incoherent fermions at T = 0.

The value of Tc. In Fig. 2 we show Tc given by
Eq. (3), together with the numerical solution of the gap
equation. We see that at large N the actual solution
and the one from Eq. (3) agree quite well, as expected.
The agreement does not extend to N ∼ 1 at small γ,
but gets progressively better for larger γ, for which Tc
is predominately determined by the first two Matsubara
frequencies even for N = 1, i.e. Tc ≈ g/(2π). Other Mat-
subara frequencies account only for a small correction
to Tc = g/(2π). To verify this, we computed the lead-
ing correction in 1/γ for an arbitrary N and obtained
Tc = g

2π (s/N)1/γ where s = s(N) is determined from
J3/2+N/s(1/s)/J1/2+N/s(1/s) = s−1, where J is a Bessel
function (see Ref. [33] for detail) At N = 1, s = 1.1843,
at N � 1, s = 1 + 1/(2N), in agreement with Eq. (3)
(In Eq. (3), δγ → 1/2 at γ → ∞). For the strong cou-
pling limit of electron-phonon superconductivity (γ = 2,
N = 1), Tc ≈ 0.17g, which is very close to 0.18g, ob-
tained in extensive numerical studies [28, 29] on a large
mesh of Matsubata frequencies. This has been noticed in

10-1 100 101 102γ

1

10

100

1000

T
c/
g

Tc = g/2π

Actual
First Matsubara

FIG. 3. The numerical result for Tc at N = 1 as a function of
γ. At small γ, Tc is determined by all Matsubara frequencies
and increases exponentially with decreasing γ (see the text).
At γ > 1 it rapidly approaches Tc = g/2π, which we obtained
analytically from the two lowest Matsubara frequencies.

Ref. 28 but not related to the absence of the self-energy
at ωm = ±πT .

For completeness, we also computed Tc at small γ and
N = O(1). In this regime Tc � ω0 (see Fig. 2) and the
self-energy is again irrelevant, but now simply because at
T = Tc, ωm � Σ(ωm) for all m. Neglecting Σ(ωm′) in
Eq. (1), we obtain (see Ref. [33] for details)

Tc ∼ ω0(γN)−1/γ ∼ g

2πN1/γ e
log(b/γ)/γ � g

2πN1/γ , (4)

where b = O(1). A similar result for the pairing scale
has been obtained in Refs. [14, 40] using RG procedure.
Note in passing that the divergence of Tc at γ → 0 is
the consequence of the fact that in this limit the effective
interaction χ(Ωm) = (g/|Ωm|)γ tends to a constant, while
there is no upper cutoff in the theory. If we add a cutoff,
we indeed obtain that Tc saturates.

In Fig. 3 we plot Tc at N = 1 obtained numerically
from the Eliashberg equation (1). We see that at γ > 1,
Tc rapidly approaches g/2π – the result which we ob-
tained analytically from the two lowest Matsubara fre-
quencies. We emphasize that at both small and large γ
the fermionic self-energy is irrelevant for Tc. At γ ∼ 1, it
does affect the value of Tc, but is not crucial in the sense
that a comparable Tc is obtained without including the
self-energy.

Conclusion. In this paper we computed super-
conducting Tc for a set of quantum-critical models with
Eliashberg-type effective dynamical interaction between
low-energy fermions. We found that superconductivity
always develops above a quantum-critical point, no mat-
ter what is the interplay between the pairing interaction
and fermionic incoherence at T = 0. We argued that the
proper calculation of Tc should be done directly at a fi-
nite temperature, and Tc is non-zero due to the fact that
at a finite T the self-energy vanishes at the two lowest
fermionic Matsubara frequencies ωm = ±πT . This im-
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plies that fermionic incoherence at a QCP is not an ob-
stacle for superconductivity. We caution, however, that
this is true for the Eliashberg Tc, which does not include
fluctuations of the pairing gap. The analysis of the gap
fluctuations requires separate consideration.
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