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We combine numerical diagonalization with a semi-analytical calculations to prove the existence of
the intermediate non-ergodic but delocalized phase in the Anderson model on disordered hierarchical
lattices. We suggest a new generalized population dynamics that is able to detect the violation
of ergodicity of the delocalized states within the Abou-Chakra, Anderson and Thouless recursive
scheme. This result is supplemented by statistics of random wave functions extracted from exact
diagonalization of the Anderson model on ensemble of disordered Random Regular Graphs (RRG)
of N sites with the connectivity K = 2. By extrapolation of the results of both approaches to
N → ∞ we obtain the fractal dimensions D1(W ) and D2(W ) as well as the population dynamic
exponent D(W ) with the accuracy sufficient to claim that they are non-trivial in the broad interval
of disorder strength WE < W < Wc. The thorough analysis of the exact diagonalization results for
RRG with N > 105 reveals a singularity in D1,2(W )-dependencies which provides a clear evidence
for the first order transition between the two delocalized phases on RRG at WE ≈ 10.0. We discuss
the implications of these results for quantum and classical non-integrable and many-body systems.

Introduction.–The concept of Many Body localization
(MBL) [1] emerged as an attempt to extend the cele-
brated ideas of Anderson localization (AL) [2] from one-
particle eigenstates formed by a static random potential
to the many-body eigenfunctions of macroscopic quan-
tum systems. Later on the MBL in various models (XXZ
spin chain subject to a random magnetic field [3, 4], ar-
ray of Josephson junctions [5], etc.) became a subject
of intensive theoretical studies. The ideas of MBL ap-
pear naturally in discussions of applicability of the con-
ventional Boltzmann-Gibbs statistical mechanics to iso-
lated many-body systems. This description based on the
equipartition postulate should not be valid for the lo-
calized many-body states. Moreover, in Ref. [5] it was
shown that Boltzmann-Gibbs description of the isolated
Josephson arrays most likely remains invalid even in so
called ”bad metal” phase where the eigenstates are ex-
tended but not ergodic, e.g. they occupy a vanishing
fraction of the Hilbert space.

Due to complexity and diversity of many-body sys-
tems it is worthwhile to exploit the MBL-AL analogy to
demonstrate existence of the non-ergodic extended states
first in models for single-particle localization. It is known
that such states do exist at the critical point of AT [6]
. However, in order to be relevant for MBL they have
to constitute a distinct phase, i.e. to exist in a finite
range of parameters, e.g. the disorder strength. A nat-
ural candidate for a model where it can happen is the
disordered Bethe lattice (BL) where the number of res-
onance sites increases exponentially with distance. This
increase can compensate for the exponential smallness
of the transition amplitude, thus leading to an extended
critical phase. There are reasons to believe [7] that the
topology of Hilbert space of a generic many-body system
shares (to a leading approximation) the basic properties

of BL: (i) the exponential growth of the number of sites
N = KR on the radius of the tree R with the branch-
ing number K and (ii) the absence of loops. The latter
simplifies the problem of AL as compared to AL in finite
dimensions. In the seminal paper [8] Abou-Chakra, An-
derson and Thouless developed an analytical approach
to the Anderson model on an infinite BL that allowed
them not only to demonstrate the existence of the AL
transition but also to evaluate the critical disorder with
a pretty good accuracy. More recently some mathemati-
cally rigorous results for AL on BL were obtained [9, 10].

The most interesting and the least studied aspect of AL
on the BL is the statistics of extended wave functions.
Recently it was suggested [11, 12] that these statistics
may be multifractal, i.e. extended non-ergodic. A similar
conclusion was reached in early analytical work [13] and
more recent numerical one [14] on ”directed BL models”.
The contradiction with other results on BL and sparse
random matrices [15], where only ergodic states were
found below AT, provoked a vigorous discussion [16–20].

Note that the mere formulation of statistics of normal-
ized extended wave functions in a closed system requires
understanding of the thermodynamic limit of a finite-size
problem. For BL this poses a major problem: a finite
fraction of sites belongs to the boundary making the re-
sults crucially dependent on the boundary conditions. A
known remedy [11, 12] is to consider a Random Regular
Graph (RRG)[21, 22], where each of N sites is connected
to a fixed number (K + 1) of other sites. Such graph
has a local tree structure similar to BL but no bound-
ary. In contrast to BL, RRG has loops but the length of
the smallest statistically relevant ones is macroscopically
large ∼ lnN/ lnK.

In this paper we reformulate the approach of Ref.[8]
in a way that distinguishes extended non-ergodic states
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from ergodic ones. A new recursive algorithm (simi-
lar to population dynamics (PD) [23]) of treatment the
Abou-Chakra-Anderson-Thouless (ACAT) equations [8]
enables us to justify semi-analytically the existence of
the intermediate extended non-ergodic phase for a BL
with K = 2. This result is relevant for a broad class
of systems (e.g. [13, 17]) described by self-consistent
ACAT equations, where the loops are absent, or rare,
or irrelevant [25]. Our extensive exact diagonalization
numerics on the Anderson model on RRG with N up to
128 000 brought up a strong support for such a phase
too. Moreover, we discovered an evidence for the first
order transition between ergodic (EES) and non-ergodic
states (NEES) within the delocalized phase. Its position
corresponds to the condition for the Lyapunov exponent
L(W,E = 0) = 1

2 lnK discussed in Ref.[10]. The results
are summarized in Fig.1.
The model and fractal dimensions Dq–Below we ana-
lyze the properties of the eigenfunctions of the Anderson
model described by the Hamiltonian:

Ĥ =

N∑
i=1

εi |i〉〈i|+
N∑

i,j=1

tij |i〉〈j|. (1)

Here εi are random on-site energies uniformly distributed
in the interval [−W/2,+W/2], the connectivity matrix tij
equals to 1 for nearest neighbors and 0 otherwise.

Let |a〉 and 〈i|a〉 be the normalized eigenstates and
wave function coefficients of Hamiltonian Eq.(1) in the
site representation. One can introduce the moments
Iq =

∑
i |〈i|a〉|2q which generically scale with the num-

ber of the lattice sites N � 1 as Iq ∝ N−τ(q). For
localized states τ(q) = 0, while the ergodicity implies
τ(q) = q − 1. Multifractal non-ergodic states are char-
acterized by the set of non-trivial fractal dimensions
0 < Dq = τ(q)/(q − 1) < 1, e.g. D1 = limq→1Dq and
D2 = τ(2). Exact diagonalization of a large RRG (see
Fig.1) suggests that the fractal dimensions experience a
jump from Dq < 1 for W > WE ≈ 10.0 to Dq = 1 for
W < WE manifesting the first order ergodic transition.
Generalized recursive algorithm for ACAT equations–
Following Ref.[8] we introduce a single-site Green func-

tion, G
(k)
i (ω) = 〈i|(ω − H̃k)−1|i〉 for a site i at a genera-

tion k of the reduced Hamiltonian, H̃k obtained from Ĥ
by disconnecting generations k and k + 1. The random
Green functions are characterized by distribution func-

tions, Pk(G). Individual G
(k)
i obey the ACAT recursion

equation [8]:

G
(k)
i =

1

ω − εi −
∑
j(i)G

(k−1)
j (ω)

, (2)

where j(i) are sites at the generation k − 1 connected to
site i. These equations are ill-determined: the pole-like
singularities in the right hand sides have to be regular-
ized. This is usually achieved by adding an infinitesimal
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FIG. 1: (Color online) Fractal dimensions D2 and D1 for
K = 2 RRG and the population dynamics exponent D as
functions of disorder strength W . The W -dependence of D
extrapolated to N →∞ is presented by the ”brush-painted”
blue line which width corresponds to the uncertainty of ex-
trapolation. In spite of this uncertainty, D is distinctly dif-
ferent from 0 and 1 in a broad interval of W manifesting
the non-ergodic (multifractal) nature of extended wave func-
tions. The red solid line with black data points is a ”running”
fractal dimension D2(N,W ) = −d〈ln I2〉/d lnN obtained by
exact diagonalization at the maximal size N = 128 000 of a
disordered RRG. The fat red line is a sketch of the fractal
dimension D2(N → ∞,W ) ≡ D2(W ) extrapolated to infi-
nite N . Inset: the jump singularity in the ”running” frac-
tal dimensions D1(N = 60 000,W ) and D2(N = 128 000,W )
manifesting the ergodic transition at W = WE ≈ 10.0.

imaginary part to ω → ω + iη. The recursion Eq.(2)
might become unstable with respect to this addition.
This happens for W below the critical disorder of the
AL transition Wc and manifests the delocalized phase.
For W > Wc the solution P (G) ∝ δ(ImG) is stable. The
two types of behavior occur generically in a broad class
of Anderson models [2].

The spectrum of the Hamiltonian on a finite lattice is
given by a discrete set of energies, Ea corresponding to
states |a〉. Although the global density of states is a sum
of delta functions, ν(ω) =

∑
a δ(ω − Ea), it always has

a well-defined thermodynamic limit: one introduces an
infinitesimal broadening of each delta function, η, takes
first the limit of the infinite number of sites N → ∞
and afterwards η → 0. As a result, ν(ω) tends to a
smooth function. In contrast, for the local density of
states (LDoS), νi(ω) =

∑
a |〈i|a〉|2 δ(ω − Ea), the result

of this procedure is not always a smooth function. In-
deed, in the limit W →∞ the on-site states |i〉 are exact
eigenstates and νi(ω) = δ(ω−εi) even for the infinite sys-
tem. For finite but large W , satellite δ-like peaks appear.
The total number of the peaks is infinite in the thermo-
dynamic limit but almost all of them have exponentially
small weight. Hence the effective number of peaks re-
mains finite: it increases as W is decreased and becomes
infinite at W = Wc. At this point LDoS becomes smooth
provided that the limit N → ∞ is taken before η → 0.
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Note that the opposite order of limits, (η → 0 before
N →∞) always leads to discrete peaks in LDoS.

At W < Wc LDoS contains an extensive number M of
peaks with significant weight: M →∞ as N →∞. Gen-
erally, one expects M ∝ ND with some 0 < D ≤ 1. For
νi(ω) to be smooth, the broadening η should exceed the
spacing between the peaks δM ∝ M−1 ∝ N−D. Thus,
the simultaneous limit N → ∞, η → 0, Nγη = const
results in a smooth LDoS iff γ < D. Studying such gen-
eralized limits yields information on the scaling of the
number of peaks, i.e. on the structure of the eigenfunc-
tions. Wave functions of ergodic states are uniformly
spread on a lattice, so that M ∝ N , i.e. D = 1 and
LDoS is smooth for any γ < 1. We show below that in
a broad interval of disorder strengths in the delocalized
regime D = D(W ) < 1 and equals to the critical value of
γ corresponding to the transition between a smooth and
a singular LDoS, D(W ) = γc(W ).

For W < Wc (delocalized regime) and an infinitesimal
η > 0, ImG increases exponentially with the number of
recursion steps n in Eq.(2) describing an infinite tree:

ImG ∝ η eΛn. (3)

For a finite RRG of size N , n < lnN/ lnK [21]. For
larger n the loops terminate the exponential growth of a
typical ImG limiting it by ImG ∝ η NΛ/ lnK . Thus for
νi(ω) ∼ N−D

∑
a η/[(ω−Ea)2 + η2] ≈

∫
dEa η/[E

2
a + η2]

to be smooth (and ImG ∼ 1 independent of η) η should
scale as η ∝ N−Λ/ lnK , i.e.

D(W ) = Λ(W )/ lnK. (4)

Ideally, one would deal with infinitely small η → 0 in
order to determine the exponent Λ. However, the limited
precision of any numerical computation makes it impos-
sible in practice: for any realistic initial ImG 6= 0, the
value of ImG becomes significant after few recursions.
To avoid this problem we included an additional step to
the recursion Eq.(2):

ImG
(k)
i → e−Λk ImG

(k)
i , (5)

so we keep the typical imaginary part fixed and k-

independent: exp〈ln ImG
(k)
i 〉k = δ (where 〈...〉k denotes

averaging over all sites i in the k-th generation). As soon
as the stationary distribution of G is reached in this re-
cursive procedure, Λk → Λ.

To realize this algorithm we adopted a modified popu-
lation dynamics (PD) method [23]. In each step we used

the set of Np Green functions G
(k)
i (”population”) ob-

tained at the previous step and new on-site energies εi
to generate Np new Green functions G

(k+1)
i according to

Eq.(2) in which each site is connected to K randomly
chosen sites of the previous population set.

In order to obtain D(W ) one needs to take the limits
Np → ∞, δ → 0 of D(Np, δ,W ). The convergence turns

out to be slow (logarithmic) resulting in a considerable
uncertainty in D(W ). Luckily, D(Np, δ,W ) depends only
on the combined variable X = −1/ ln(N−1

p + aδb), with
a, b ∼ 1, rather than on lnNp and ln δ separately. Extrap-
olation ofD(W,X) toX = 0 yieldsD(W ) shown in Fig.2.
The lower inset of Fig.2 shows the collapse of the data for
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FIG. 2: (Color online) The population dynamic exponent
D(W ) (blue points with grey error bars) extrapolated to
N =∞ and δ = 0 for K = 2. The condition D(Wc) = 0 yields
Wc = 18.4+0.4

−0.2. In a broad interval of W < Wc we obtained
D(W ) distinctly different from the ergodic limit D(W ) = 1.
Lower inset: The collapse of data for a fixed W and differ-
ent Np, δ to a function D(W,X) of X = −1/ ln(N−1

p + aδb).
Extrapolation to X = 0 gives the population dynamic ex-
ponent D(W ). The delocalized phase corresponds to 1 ≥
D(W ) > 0, whereas in the localized phase D(W ) < 0. Up-
per inset: the finite-size critical disorder Wc(X) defined as
D(Wc(X), X) = 0 and its extrapolation to X = 0 by the

power-law fit Wc(X) = Wc − aX
1
ν with Wc = 18.4, ν = 0.56

(blue) and Wc = 19.0, ν = 0.7 (red). Without extrapola-
tion the value of Wc at maximal population size N∗

p ∼ 108 is
Wc(N

∗
p ) ≈ 17.5.

several N and δ from the intervals 103 < N < 108 and
10−3 < δ < 10−17. Since b ≈ 0.5, one needs exception-
ally small δ to reach small X. This required computation
with higher than usual precision.

Note that the exponent Λ is a property of an infinite
BL, N =∞. Therefore Λ is free of the finite-size effects
which dominate the moments Iq(N) at N < Nc, where
the correlation volume Nc ∼ exp[1/Λ(W )] diverges at
W →Wc. The uncertainty of extrapolation of Λ to Np →
∞ and δ → 0 turns out to be small enough not to raise
doubts that 0 < D < 1 at least in the interval 10 < W <
18 for K = 2. Additional support of existence of the
phase with 0 < D < 1 comes from the analytical solution
to Eq.(2) in the large-K limit [25]. It turns out that in
this limit D(W ) = 0 and D(W ) = 1 correspond to the
special values of the Lyapunov exponent L = lnK and
L = 1

2 lnK discussed in Ref.[10].
Exact diagonalization on RRG.– While ACAT ap-

proach is commonly believed to describe well the lo-
calized phase of RRG, its applicability in the delocal-
ized regime requires further inverstigation. We per-
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FIG. 3: (Color online) Left panel: D2(N,W ) deep in the delocalized phase. The curves tend to converge to two different values
of D2 for W = WE + 0 and WE − 0, where WE ≈ 10.0. Right panel: Formation of a jump in D2(W ).

formed a direct study of the Anderson model on RRG
by exact diagonalization at the system sizes N up to
128 000 in the range of disorder strength 7.5 < W < 20.
The main focus was on calculating the inverse partici-
pation ratio I2 =

∑
i |〈i|a〉|4 and the Shannon entropy

S = −
∑
i |〈i|a〉|2 ln(|〈i|a〉|2) for the eigenstates |a〉 with

energies Ea near the band center. The expected asymp-
totic behavior of the typical averages at N →∞ is [12]:

〈ln I2〉 = −D2 lnN + c2, 〈lnS〉 = D1 lnN + c1, (6)

where 〈...〉 are the averages both over the ensemble of
RRG with fixed connectivity K = 2 and over random on-
site energies εi, D1,2 are the multifractal dimensions and
c1,2 ∼ 1. The derivatives D2(N,W ) = −d〈ln I2〉/d lnN
and D1(N,W ) = d〈lnS〉/d lnN should saturate at D2

and D1, respectively in the limit N →∞.
We present the results for D2(N,W ) deep in the delo-

calized phase (Fig.3) and close to the localization transi-
tion (Fig.4). Note two important features on these plots:
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FIG. 4: (Color online) D2(N,W ) close to the localization
transition at W = Wc. The N -dependence show minima (red
spot) for W < Wc at Nmin → ∞ as W → Wc [19]. Inset:
D2(Nmin,W ) as a function of W . Extrapolation by a second-
order polynomial gives Wc = 18.1± 0.5.

(i) an abrupt change of behavior for W close to 10 and
(ii) a minimum in the N -dependence of D2(N,W ) (re-
cently reported in [19]) in the vicinity of AL transition:

as W → Wc − 0, D2(Nmin,W ) at the minimum and
1/ lnNmin vanish. Extrapolation of D2(Nmin,W ) leads
to Wc = 18.1± 0.5 (see inset to Fig.4) in agreement with
PD results, Fig.2.

A striking result of the exact diagonalization is the ex-
istence of a jump in bothD2(N,W ) andD1(N,W ) shown
in Fig.1. A feature, which is almost invisible at small N
evolves to a more and more abrupt jump as N increases
above 60 000 (see Fig. 3, right panel). Extrapolation of
D2(N,W ) to N →∞ for W < 10.0 gives D2 = D2(N →
∞,W ) = 1, whereas D2(W = 10.0) = 0.86 ± 0.02. We
conclude that on RRG at W = WE ≈ 10.0 [26] there is
a first order transition from the non-ergodic delocalized
phase at W > WE to the ergodic one at W < WE .

Conclusion. The existence of the non-ergodic phase of
the BL Anderson model together with the similarity of
this model with generic many-body ones gives basis for
far-reaching speculations. The point is that in contrast
to the conventional Anderson localization, which is the
property of any wave dynamics, the MBL is a genuine
quantum phenomenon. Indeed, in the classical limit, a
weakly perturbed integrable system with d > 2 degrees of
freedom always demonstrates some diffusion in the phase
space known as Arnold diffusion[27]. Although the cel-
ebrated Kolmogorov Arnold Moser (KAM) theorem [28]
guarantees the survival of the vast majority of the in-
variant tori the chaotic part of the phase space is con-
nected (unless d = 2), thus allowing the diffusion for
arbitrary weak perturbation. Therefore one should not
expect MBL in the classical limit. On the other hand the
glassy states of matter without doubts exist for any ~ in-
cluding ~ = 0 and are obviously not ergodic. It is safe
to assume that the extended non-ergodic phase of the
MBL models is not qualitatively different from a classical
glassy state [29]. Therefore our arguments in favor of the
existence of the delocalized non-ergodic phase of the BL
Anderson model and the true phase transition between
the ergodic and non-ergodic states can be considered as
arguments in favor of glassy states being distinct states
of matter and their transition to fluids being a true phase
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transition.
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