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We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures
above quantum degeneracy and develop a quantitative theory to describe this behavior. The the-
ory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional
properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-
enhancement factors. Our results extend the utility of expansion imaging by providing accurate
thermometry for dipolar thermal Bose gases. Furthermore, we present a simple method to deter-
mine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation
of thermal gas expansion.

PACS numbers: 34.50.-s, 67.85.-d, 47.65.Cb, 51.20.+d

Expansion imaging of a gas of atoms or molecules af-
ter it has been released from a trap provides a simple
and highly valuable experimental tool for probing ultra-
cold gases. For example, the technique is routinely used
for thermometry by measuring the rate of gas expan-
sion as it falls. The well-established procedure relies on
the isotropic expansion of a thermal gas in which the
interactions are negligible. Crucially, deviations from
this isotropic behavior can provide a signature of the
underlying interactions (and other complex phenomena)
within the gas. Two notable examples of such deviation,
caused by interacting systems confined in anisotropic
traps, involve an aspect ratio (AR) inversion in non-
dipolar Bose-Einstein condensates (BEC) due to mean-
field (MF) pressure forces arising from contact interac-
tions [1, 2] and in thermal Bose [3] and degenerate Fermi
gases [4] in the collisional-hydrodynamic regime. Both ef-
fects alter the time-of-flight (TOF) dynamics and require
a theoretical analysis to be understood [5]. The case of
dipolar gases is more complicated since the anisotropy of
the interaction also contributes to the TOF AR [6–8]. No
theory exists for thermal dipolar Bose gas expansion even
though such a theory is crucial for accurate thermometry.

In this Letter, we report on the anisotropic expan-
sion of thermal bosonic 162Dy and 164Dy gases [9] and
infer the temperature and scattering length from the
TOF anisotropy. We find that the dominant physical
mechanism responsible for the anisotropy comes from
interatomic collisions which partially rethermalize the
gas during the TOF. Non-negligible contributions arise
also from Hartree-Fock mean-field interactions and Bose-
enhancement factors. In particular, the resulting the-
ory allows us to characterize the background scattering
length and width of the 5.1-G Feshbach resonance in
162Dy [10].

Our results pave a way toward investigations of ultra-

cold gases in nontrivial regimes of classical fluid dynam-
ics [11] where atomic collisions give rise to viscosity and
turbulence [12]. Anisotropic dipolar interactions lead to
a magnetoviscosity which has been studied in the con-
text of classical ferrofluids in archetypal situations in-
volving capillary flow [13]. While quantum ferrofluidity
below condensation temperature Tc has been explored in
Cr BECs [6], magnetoviscosity of dipolar Bose systems
in the intermediate ultracold regime above Tc has yet
to be explored. Such a regime is particularly relevant
within the context of future progress toward connecting
classical [12] and quantum [14] regimes of turbulence. It
is therefore of fundamental interest that, in contrast to
alkali atoms and Cr, this regime is accessible in these
ultracold dysprosium gases with unsurpassed magnetic
moment µ = 10µB (Bohr magnetons).

Strongly dipolar lanthanide gases such as Dy and
Er have additional complications associated with ex-
tremely dense spectra of Feshbach resonances revealed
by atom-loss spectroscopy [10, 15–17]. Such measure-
ments provide the location, B0, of individual resonances
and have stimulated statistical studies on their distribu-
tion [16, 18]. However, atom-loss spectroscopy alone can-
not measure the resonance width ∆B [19], the remaining
parameter that is required for quantitative control over
the scattering length. To obtain ∆B, scattering lengths
near a resonance must be measured. We demonstrate a
particularly simple way of doing so by using fits of the
thermal-gas AR expansion to our theory; a related tech-
nique was demonstrated for dipolar BECs [20].

We prepare ultracold gases of 162Dy and 164Dy fol-
lowing procedures described in Ref. [21]. In short, we
perform laser cooling in two magneto-optical-trap stages,
followed by forced evaporative cooling in a crossed opti-
cal dipole trap (ODT) formed by two 1064-nm lasers.
During the evaporation, the magnetic field is along the
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z-axis (along gravity) and at a Feshbach resonance-free
value of B = 1.580(5) G [22]. To measure the AR in TOF
of the gas, we suddenly turn off the trap and image the
gas along the y-axis after 16 ms using absorption imag-
ing. We then fit the atomic density to a 2D-Gaussian
function to extract the gas size σx and σz along x̂ and
ẑ [23]. The gas AR is defined as σz/σx.

The dipolar thermal Bose gas used in our experi-
ment consists of N = 1.4(1) × 105 atoms for 162Dy and
1.2(1) × 105 for 164Dy. The atoms are prepared in the
|J = 8,mJ = −8〉 ground state. To study the tempera-
ture dependence of the AR, we prepare the same num-
ber of atoms in the same trap but at different temper-
atures: First the gas is evaporated close to degeneracy,
then the trap depth is increased, and finally we para-
metrically heat the gas to the desired temperature by
modulating the ODT power. Before releasing the gas
for TOF imaging, we let it thermalize in the trap for
1 s, which is much longer than the few-ms thermal-
ization timescale [24]. The final trap frequencies are
[ωx, ωy, ωz] = 2π× [107(1), 49(5), 266(1)] Hz for both iso-
topes. We note that this oblate trap geometry, where
the confinement is the strongest along the magnetic field
orientation ẑ, is necessary to avoid dipolar mechanical
instabilities when evaporating towards Tc [25].

The measured gas AR at different temperatures are
shown in Fig. 1. The errors include both statistical and
systematic uncertainty and are dominated by systematic
error, which we estimate to be 1% [26]. We measure
an anisotropy as large as 9% for 162Dy at 200 nK—just
below Tc—with the field along ẑ. The anisotropy de-
creases with higher temperature, or when the magnetic
field points along the imaging axis ŷ, such that the dipo-
lar interaction is symmetric in the imaged x-z plane. The
same trend is evident for 164Dy but with overall smaller
anisotropy. This field dependence indicates that dipolar
physics is at least partially responsible for the anisotropic
expansion dynamics, along with the isotope dependence
due to different scattering lengths [24], as we now explain.

Our starting point is the known phase-space distribu-
tion function of a classical non-interacting gas during
expansion f(r,p, t) = fx(x, px, t)fy(y, py, t)fz(z, pz, t),
where fi(ri, pi, t) ∝ exp[−p2i /2mkBT − mω2

i (ri −
pit/m)2/2kBT ]. The spatial size along direction i evolves
according to σi(t) =

√
kBT/mω2

i

√
1 + ω2

i t
2, and in the

limit ωit� 1, we have σi(t)→
√
kBT/mt leading to the

isotropic shape in the long-time limit and reflecting the
isotropic momentum distribution in the trap. Even in the
presence of interactions, the rapidly decreasing density
means that the expansion becomes ballistic, and there-
fore

√
〈p2z〉/〈p2x〉 determines σz/σx after a long TOF. We

estimate the finite-t correction to σz/σx from the non-
interacting case; it scales as 1/t2, and for our parameters
it does not exceed 0.5%. Nevertheless, we take this effect
into account.

The strategy for calculating 〈p2i 〉 relies on a perturba-
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FIG. 1. Measured gas AR after 16 ms of TOF for 162Dy in
(a) and 164Dy in (b). In both (a) and (b), red is for magnetic
field along ẑ and blue is for ŷ. Points are data with 1σ total
error: statistical plus 1% systematic [26]. Solid red and blue
curves are calculated using the full theory with the best-fit
scattering lengths. Dashed curves are calculated for only the
MF effect with the best-fit scattering lengths found using the
full theory. Horizontal solid gray line marks unity AR and
vertical gray line marks Tc.

tive treatment. We write 〈p2i 〉 = mkBT + ∆〈p2i 〉, where
mkBT comes from the zeroth-order distribution function
f(r,p, t) and ∆〈p2i 〉 takes into account interaction and
statistical effects. The mean-field (MF) contribution to
the kinetic energy ∆〈p2i 〉MF/2m equals work done by the
ith-component of the gradient of the MF interaction av-
eraged over f(r,p, t). This MF part contains the con-
tact term, proportional to the scattering length a, and
the dipole-dipole term, proportional to the dipole length
ad = µ0µ

2m/8πh̄2 [27], where µ0 is the vacuum perme-
ability. We find

∆〈p2i 〉MF =
2Nh̄2ω̄3m3/2

(kBT )3/2
{ad[H

(i)
d +F

(i)
d ]+a[H(i)+F (i)]},

(1)
where ω̄ = (ωxωyωz)1/3 and the dimensionless constants
H, Hd, F , and Fd, given explicitly in Ref. [26], are func-
tions of the trap aspect ratios. These letters stand for
the Hartree and Fock contributions, respectively. In ad-
dition, the dipole parts Hd and Fd depend on the field
orientation [26]. Anisotropies due to the MF terms only
are shown as dashed lines in Fig. 1. While the MF inter-
action is significant, it is not sufficient to match the level
of anisotropy observed in our system.

We find that a more important contribution to the AR,
independent of the MF term at leading order, is the ther-
malization during the TOF in which the kinetic energy is
transferred from 〈p2i 〉/2m to 〈p2j 〉/2m by two-body colli-
sions. In order to understand this phenomenon, we first
point to the kinematic effect which occurs in the non-
interacting gas and which can be seen from f(r,p, t):
during expansion the thermal motion of particles is trans-
ferred to the directed motion characterized by the finite
average velocity with components 〈vi〉 = riω

2
i t/(1+ω2

i t
2).
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Important for us is that in the reference frame where the
gas is locally stationary, its momentum distribution is
equivalent to that of a thermal gas with anisotropic tem-
perature T/(1 + ω2

i t
2) [26]. Collisions try to establish

thermal equilibrium by transferring kinetic energy more
frequently, on average, from “hotter” directions (smaller
ωi) to “colder” ones (larger ωi). We call this effect hydro-
dynamic (HD), although the collision rate is too low to
continuously maintain thermal equilibrium during expan-
sion. The corresponding contribution to ∆〈p2i 〉 is linear
in the scattering cross section, i.e., quadratic in a and ad,

∆〈p2i 〉HD = (2)

2Nm2a2dω̄
2

{[
A

(i)
0 +A

(i)
1

(
a

ad

)
+A

(i)
2

(
a

ad

)2
]

+N

(
h̄ω̄

kBT

)3
[
B

(i)
0 +B

(i)
1

(
a

ad

)
+B

(i)
2

(
a

ad

)2
]}

,

where the dimensionless constants A and B are functions
of the trap aspect ratios [26]. The first line in the right
hand side of Eq. (2) describes the two-body collisional ef-
fects using the differential cross sections obtained in the
first-order Born approximation [26, 28]. Previous work
on inelastic dipolar collisions has shown the first-order
Born approximation to be valid in strongly dipolar sys-
tems like dysprosium [29].

The last line in Eq. (2) accounts for the quantum
effects on two-body collisions, where the probability
of a scattering event is Bose enhanced according to
the local phase-space density. This effect should be
distinguished from the deviation of the in situ Bose-
Einstein momentum distribution from the Maxwell-
Boltzmann one. To first order in the degeneracy param-
eter, the in situ Bose-Einstein deviation is ∆〈p2i 〉BE =
mkBT (N/16)(h̄ω̄/kBT )3. It does not introduce any
anisotropy to the gas AR, but it is important for the
accurate determination of the temperature, even in the
non-interacting gas. Adding this correction to the ones
given by Eqs. (1) and (2) results in the corrected ther-
mometry which infers T = Ti from the expansion dy-
namics along direction i.

Among the four mechanisms labeled by letters H and
F in Eq. (1) and A and B in Eq. (2), we find that the
Hartree MF interaction (H) and the two-body collision
effects (A) are the dominant sources of gas anisotropy:
For the 162Dy data point at 200 nK with field along ẑ in
Fig. 1(a), they contribute 3.0% and 5.6%, respectively,
out of the total 9% anisotropy. These numbers are cal-
culated for the aspect ratios ωx :ωy :ωz = 107:49:266 via
Eqs. (28)–(37) of Ref. [26] (see Table I therein). We have
also estimated the effective-range correction to the scat-
tering cross sections by calculating the second-order Born
correction to the interaction matrix element at finite col-
lision energy. It is proportional to a2dk, where k ∝

√
T is

the collision momentum. We find that the corresponding
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FIG. 2. (a) Illustration of Bose-corrected TOF thermometry
to a dipolar thermal Bose gas, showing that the theory fails
to yield the same temperature along the x̂, ŷ, and ẑ direc-
tions. Field along ẑ. Theory curves are: Tx (blue, dashed),
Ty (gray, solid), and Tz (red, dotted). (b) Observed differ-
ence between Tx and Tz, the two dimensions in the imaging
plane. The discrepancy is large if only the Bose-corrected
TOF thermometry is applied directly (gray points), but can
be reduced to close to zero (gray line) using the additional
corrections provided in Eqs. (1) and (2) (red points). The-
oretical curves in (a) and data in (b) are presented for the
experimental parameters used in the 162Dy measurement of
Fig. 1(a) with the magnetic field along ẑ: N = 1.4(1) × 105

and [ωx, ωy, ωz] = 2π × [107(1), 49(5), 266(1)] Hz.

contribution to the AR is negligible for our parameters.

The MF interaction and the collisional effects cause
the gas to expand faster in ẑ but slower in x̂ and ŷ for
our system’s trap parameters. A direct application of
the usual Bose-corrected TOF thermometry (neglecting
interactions) in this case would yield conflicting appar-
ent temperatures along each dimension. Indeed, this is
shown by theoretical curves in Fig. 2(a). At 200 nK, the
discrepancy ∆T = Tz − Tx between the two dimensions
in the imaging plane is about 50 nK, corresponding to
25% of its temperature. A mistaken application of this
theory leads to an inaccurate determination of temper-
ature and other temperature-related properties such as
gas size, trap density, etc., highlighting the need for the
corrections in Eqs. (1) and (2).

The fact that a gas in thermal equilibrium has a single
well-defined temperature allows us to determine the deca-
heptuplet s-partial-wave scattering length a of 162Dy and
164Dy using our theory. With the correct a value, our
theory should both minimize ∆T and predict the mea-
sured AR at various temperatures. To determine a, we
vary a in Eqs. (1) and (2) and find the best-fit scat-
tering length that simultaneously matches the AR data
measured at the two different field orientations. In this
fitting procedure, we assign the average of Tx and Tz
to be the gas temperature. The details of this analy-
sis are described in [26]. The fitted scattering length
is a162 = 154(22)a0 for 162Dy and a164 = 96(22)a0 for
164Dy, where a0 is the Bohr radius. This new measure-
ment for 164Dy is consistent with our previously reported



4

value, 92(8)a0, measured in cross-dimensional relaxation
experiments [24]. It also agrees with the measurement
reported in Ref. [17] using Feshbach spectroscopy. The
new best-fit a for 162Dy is larger than, though not incon-
sistent with, our previous measurement 122(10)a0, and
we provide a more detailed discussion of this discrepancy
in the supplemental material [26].

To illustrate that our theory greatly improves the ac-
curacy of thermometry for a thermal dipolar Bose gas,
we show in Fig. 2(b) ∆T before and after applying our
theory to the 162Dy measurement. The ∆T measured
in Fig. 2(b) increases at lower temperatures and is simi-
lar to the theoretical predictions for Bose-corrected TOF
thermometry in Fig. 2(a). Applying our corrections with
the best-fit scattering length leads to almost an order of
magnitude reduction in ∆T . This allows us to determine
the temperature of a thermal dipolar Bose gas with far
less uncertainty. The temperatures assigned to the data
in Fig. 1 are the average of the corrected Tx and Tz; error
bars represent the discrepancy.

The dependence of gas AR on the scattering length
a provides an experimental probe for investigating the
variation of a near Feshbach resonances. For magnetic
Feshbach resonances, a varies with the magnetic field B
according to a(B) = abg[1 − ∆B/(B − B0)], where abg
is the background scattering length, B0 is the resonance
center, and ∆B is the resonance width [19]. We demon-
strate the measurement of a near a Feshbach resonance at
5.1 G for 162Dy, shown in Fig. 3(a), by analyzing the gas
AR in TOF. Our technique is more convenient than cross-
dimensional relaxation for measuring scattering length
because it requires only a single experimental measure-
ment to determine a at a given field. Cross-dimensional
relaxation, by contrast, requires multiple measurements
to extract a thermalization time as well as extensive nu-
merical simulations when a strong dipolar interaction is
present [30][31].

To measure the gas AR near the resonance, we prepare
2.7(1)×105 atoms at 280 nK in a trap with [ωx, ωy, ωz] =
2π × [89(1), 44(5), 219(1)] Hz. The magnetic field is first
set at 1.580(5) G, which is the value used for evapora-
tive cooling. We then shift the field to the desired value
using a 10-ms linear ramp. Throughout this procedure,
the field is kept along the axis of tight confinement, ẑ,
to achieve the largest anisotropy in AR. After the field
ramp, we hold the atoms for 50 ms before releasing for
TOF imaging.

The measured gas ARs are shown in Fig. 3(b). As
the field approaches the 5.1-G resonance from the lower
side, we observe increasingly larger AR, as is expected
for larger a. We use our theory to convert the AR values
to scattering length, accounting for variations in atom
number. The results are shown in Fig. 3(c). The AR that
follows from Eqs. (1) and (2) is a quadratic function of a
given by σz/σx ≈ 1.01+(2.3×10−4+1.6×10−6 a

a0
) a
a0

for
the ω’s, N , and T mentioned above. A minimum value
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FIG. 3. (a) High resolution atom-loss spectrum for 162Dy
showing a resonance at 5.1 G and three nearby narrower res-
onances. Line is guide to eye. (b) Measured gas AR as a
function of magnetic field. Horizontal line marks unity AR.
(c) Scattering lengths corresponding to the data in (b). We
are unable to extract a scattering length for four points near
the 5.2 G small resonance with AR below unity; see text for
details. All error bars represent 1σ uncertainty.

therefore occurs at a ≈ −72a0 with σz/σx ≈ 1. With
our 1% systematic error, we therefore have a blind spot
in scattering length in the region −139a0 <∼ a <∼ −4a0
about a ≈ −72a0. It is within this range wherein the four
data points near 5.2 G that have ARs below (but within
∼1.5σ of) the theoretical minimum value presumably lie,
and we are unable to determine a scattering length for
them [32]. In principle, this blind spot could be shifted
to a different region of a by adjusting trap aspect ratios.

The scattering lengths shown in Fig. 3(c) fit well to
the functional form a(B). The fitted resonance width is
∆B = 24(2) mG, and the fitted background scattering
length is abg = 157(4) a0. This abg value is consistent
with the best-fit a162 obtained from analysis of the data
shown in Fig. 1(a), which are taken at a different field
and trap frequency with about half the atom number.
Note that we do not observe a measurable change in a at
the other two small resonances near 4.6 G and 5.6 G.

In conclusion, we observe and develop a theoretical un-
derstanding of the anisotropic expansion of thermal dipo-
lar Bose gases of 162Dy and 164Dy. The experiment lies in
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a very favorable regime as far as experiment-theory com-
parison is concerned; the AR anisotropy is large enough
to be measured though small enough for a well-controlled
perturbative theory to apply. As a consequence, we are
able to apply this theory for TOF thermometry in this
novel regime as well as measure the scattering length of
the gas near a Feshbach resonance with ease. This sim-
ple method for measuring scattering lengths may con-
tribute to the development of a comprehensive theoret-
ical understanding of how collisions are affected within
the dense and ultradense Feshbach spectra of these colli-
sionally complex lanthanide atoms [16–18, 33]. Looking
beyond the study of hydrodynamics in magnetic Bose
gases, a similar thermometry theory may aid the study
of polar molecules near quantum degeneracy.
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