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This paper presents the first experimental confirmation of a new theory predicting enhanced
drag due to long-range collisions in a magnetized plasma. The experiments measure damping of
Langmuir waves in a multi-species pure ion plasma, which is dominated by interspecies collisional
drag in certain regimes. The measured damping rates in these regimes exceed classical predictions
of collisional drag damping by as much as an order of magnitude, but agree with the new theory.

Collision rates are fundamental to our understanding
of transport phenomena in plasmas. In magnetized plas-
mas, the classical theory of collisions [1–3] has long been
used to describe these phenomena. However, when the
cyclotron radius rc ≡ qsB/Msc is less than the Debye
length λD ≡ (T/4πn0q

2
s)1/2, it is known that classical

theory is incomplete, since this theory neglects long-
range collisions with impact parameters ρ in the range
rc < ρ < λD for which no parallel-perpendicular velocity
scattering occurs. Here, B represents the magnetic field
strength, qs and Ms are the species charge and mass,
n0 is the plasma density, and T is the plasma tempera-
ture in units of energy. Previous experiments and the-
ory have shown that these long-range collisions enhance
cross-field diffusion [4, 5], heat transport [6, 7], and vis-
cosity [8, 9] by orders of magnitude over classical the-
ory when λD > rc. The effect of long-range collisions
on frictional drag was also considered theoretically using
Fokker-Planck theory [10] and a Boltzmann analysis [11],
but these theories are inconsistent, and in any case have
never been tested.

A new theory [12] of long-range collisions resolves the
inconsistencies, and predicts strongly enhanced parallel
drag in magnetized plasmas for which λD > rc. A new
fundamental length scale d ≡ b(v̄2/b2ν2ss′)

1/5 ∝ T 1/5 is
identified in this theory, where b = q2s/T is the distance
of closest approach, v̄ is the thermal velocity, and νss′ is
the collision rate. This new length scale d separates long-
range collisions into two regimes: 1) ρ < d where the col-
liding particles can be treated as a correlated sequence of
two-body, point-like, energy and momentum-conserving
“Boltzmann” collisions; and 2) ρ > d where multiple
weak collisions occur simultaneously and Fokker-Planck
analysis is valid. The long-range collisional enhancement
of parallel drag applies to Penning trap plasmas for both
matter and antimatter [13–15], for some astrophysical
plasmas [16], and even for the edge region of tokamak
plasmas [17–19].

Here we present the first experimental confirmation
of this enhanced collisional drag, obtained through mea-
surements of the damping of Langmuir waves in a multi-
species ion plasma. Collisional drag damping theory pre-

dicts damping proportional to the collisional interspecies
parallel drag force. The measured damping rates are in
quantitative agreement with the theory only when long-
range collisions are included, since the enhanced parallel
slowing rates exceed classical slowing rates from short
range collisions (with ρ < rc) by as much as an order of
magnitude.

These damping measurements extend over a range
of two decades in temperature where collisional drag
damping is dominant. In this temperature range, the
damping is dependent on the plasma composition and
scales roughly as T−3/2. At higher temperatures, Landau
damping dominates, and at lower temperatures centrifu-
gal mass separation [20–23] and collisional locking of the
fluid elements becomes significant. At ultra-low temper-
atures, the plasma approaches the moderately coupled
regime, and these damping measurements may provide
insight into the collisionality of a correlated, magnetized
plasma.

A cylindrical Penning-Malmberg trap is used to con-
fine these multi-species ion plasmas [24], with Bz = 3
Tesla. The ions are predominately Mg+ from a Magne-
sium vacuum electrode arc, with 5− 30% impurity ions,
consisting mostly of H3O+, from chemical reactions with
the background gas. The impurity ion fraction is varied
by changing the background gas pressure over the range
10−10 ≤ P ≤ 10−8 Torr.

A quantitative determination of the species fraction δs
and mass Ms for each species s is obtained by measur-
ing the resulting heating from short, resonant cyclotron
bursts (200-800 cycles) [23]. The charge fractions are
measured to a 10% accuracy down to a δs ∼ 0.5% level. A
typical “dirty” plasma composition consists of the three
naturally occurring Magnesium isotopes (24, 25, and 26),
H3O+ (19), HCO+ (29), O+

2 (32), C3H+
3 (39), and C3H+

7

(43); with δs ∼ (52, 9, 10, 16, 4, 4, 4, 1)% respectively.

By using a weak applied “rotating wall” (RW)
field [25], these cylindrical ion plasmas are confined for
days in a near thermal equilibrium state described by
“top-hat” density and rigid-rotor rotation profiles. Ra-
dial profiles of the total Mg+ density, rotation velocity,
and plasma temperature are measured through Laser
Induced Fluorescence (LIF) techniques [24]. A typical
plasma has a radius Rp ∼ 0.5 cm, density n0 ∼ 1.9× 107
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FIG. 1. (Color online) The amplitude evolution of an mz = 1
TG wave. An exponential fit (red curve) to the decreasing
amplitude determines the damping rate. The measured mode
frequency remains constant over the evolution.

cm−3, length Lp ∼ 10 cm, and rotates at fE ∼ 9 kHz.
Altering the frequency of the RW enables control of the
rotation rate fE = (4 → 31) kHz and thus the plasma
density n0 = (0.9→ 6.4)× 107 cm−3.

The plasma temperature T is controlled from 10−4 to 1
eV through laser cooling of the 24Mg+ ions. This enables
damping measurements spanning regimes from collision-
less Landau damping to collisional drag damping. For
plasmas at T >∼ 10−3 eV (11.6 Kelvin), the ions species
are uniformly mixed. In contrast, at T < 10−3 eV, the
species begin to centrifugally separate by mass [20–23],
with near-complete separation at T < 10−4 eV.

The damping measurements are performed on az-
imuthally symmetric, standing plasma (Langmuir)
waves. In these radially bounded plasmas, the wave
frequencies are near-acoustic, because of the shielding
of the cylindrical confinement electrodes at a radius
Rw = 2.86 cm. This Trivelpiece-Gould (TG) dispersion
relation [26] for azimuthally symmetric modes is approx-
imately

fTG = fp
kz√

k2z + k2⊥

[
1 +

3

2

(
v̄

vph

)2
]
, (1)

where kz ≡ mzπ/Lp and k⊥ = R−1p [2/ ln(Rw/Rp)]1/2 are
the axial and transverse wavenumbers respectively, and
fp is the plasma frequency.

These waves are excited with a RF burst at the linear
mode frequency applied to an end confinement ring, and
they are detected on a confinement ring located slightly
off of the plasma center. Typically, a 10 cycle sine wave
burst with a 5 mVpp amplitude is used, resulting in a
wave density perturbation δn/n0 ∼ 0.5%, and wave fluid
velocity vf ∼ 20 m/s, with a concomitant heating of
the plasma by about 3 × 10−5 eV. For this work, we
investigate the damping of the lowest order mz = 1 axial
mode occurring at a frequency f1 ∼ 26 kHz, with phase
velocity vph = 5200 m/s compared to thermal velocity
v̄ = 63 m/s at T = 10−3 eV.

The time evolution of the wave amplitude, as shown in
Fig. 1, is obtained through sine wave fits to the detected
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FIG. 2. (Color online) Symbols are damping measurements on
plasmas with three different species compositions and a den-
sity n0 ∼ 1.9 × 107 cm−3. Symbol shapes represent measure-
ments on different plasmas. Curves correspond to drag damp-
ing predictions for both a classical calculation that assumes
only short-range collisions (dashed), and a calculation includ-
ing the new long-range enhanced collisional slowing (solid).
Horizontal error bars represent typical radial variations in the
temperature. Vertical errors are smaller than the symbol size.

wave signal in time segments of approximately 5 wave cy-
cles. An exponential fit to this decreasing wave amplitude
determines the damping rate γ. At T = 2.7× 10−3 eV, a
typical damping rate is γ ∼ 132 s−1 for a “dirty” plasma
composition.

Figure 2 shows measurements of the damping rate over
four decades in the plasma temperature. At high tem-
peratures (T ∼ 0.5 eV), collisionless Landau damping
dominates. Quantitative agreement with Landau theory
is obtained for small amplitude waves as indicated by the
solid red curve [27]. This prototypical Landau damping
becomes exponentially weak for T <∼ 0.2 eV. However,
we believe that Landau damping is extended to a lower
temperature regime (0.02 <∼ T <∼ 0.2 eV) through the
same Landau interaction acting on “bounce-harmonics”
of the wave introduced through finite-length effects. At
present, the harmonics introduced from the plasma ends
are ill understood, but recent experiments [28] with con-
trolled harmonic generation have shown stronger damp-
ing in good agreement with bounce harmonic damping
theory [29] in this temperature regime.

Here, we focus on T <∼ 10−2 eV, where the damping is
dependent on the plasma composition, and scales roughly
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as T−3/2. Figure 2 shows damping measurements on
plasmas with three different compositions. We find that
the damping increases by a factor of 4 as the concentra-
tion of impurities is increased from the “clean” to “dirty”
plasma compositions. The uncertainty in the measured
damping rates is about ±10%, which is smaller than the
vertical size of the symbols. The scatter of the different
symbol shapes for a given composition corresponds to
damping measurements on different plasmas with slight
compositional variations, but roughly the same damp-
ing. For T <∼ 10−3 eV, the damping is observed to de-
crease from the T−3/2 scaling, consistent with the onset
of centrifugal mass separation. The fact that the mea-
sured damping is dependent on the plasma composition
and scales as T−3/2 supports inter-species drag as the
observed damping mechanism.

This inter-species drag damping is adequately modeled
by cold fluid theory. Basically, ions are accelerated by the
wave electric field as qsE/Ms, producing a disparity in
the velocity of different species. Inter-species collisions
then cause drag forces on each species, which damps the

wave. The oscillating velocity v
(s)
f of species s parallel to

the magnetic field is predicted to be

v
(s)
f =

qskzδφ

Msω
− i
∑
s′

νss′

ω

(
v
(s)
f − v

(s′)
f

)
, (2)

where νss′ is the collisional slowing rate between species
s and s′, δφ is the wave potential, and ω is the complex
wave frequency.

We are able to directly measure the mean velocities of
the three Mg+ isotopes by measuring the parallel veloc-
ity distribution F (v‖) coherent with the wave-phase θl(t)
received on the wall. Figure 3 (Top) shows the wave-
phase coherent F (v‖) of the Mg+ isotopes for 8 different
phase bins θl = (l − 1)2π/8. These wave-phase coher-
ent distributions are measured by tuning the probe laser
frequency to be resonant with a Mg+ isotope moving at
a velocity v‖. A wave is then excited, and the time of
arrival of each fluorescent photon is recorded along with
the wave amplitude and phase. The photons are then
binned by wave-phase over 400 wave cycles. This process
is repeated at 512 different velocities (laser frequency de-
tunings) to construct F (v‖). The Mg+ distributions are
found to oscillate around v = 0 (vertical orange lines) as
the ions are accelerated by the wave electric field. Here
a large amplitude drive of 20 mVpp has been used to in-

duce a fluid velocity v
(24)
f = 77 m/s comparable to the

thermal speed v̄.
The black symbols and curves in Figure 3 (Bottom) are

measurements of and sine wave fits to the central velocity
of each isotope distribution for the 8 different phase bins.
These fits determine the oscillating fluid velocity of each

Mg+ isotope. The velocity difference δv
(s)
f ≡ v

(s)
f − v

(24)
f

of the isotopes 25Mg+ and 26Mg+ are represented by the

red curves. We find δv
(25)
f = −(4.1 ± 1.1)% v

(24)
f and

FIG. 3. (Color online) Measurements of the parallel veloc-
ity distribution function F (v‖) coherent with the wave-phase
θl(t) (Top), each phase is offset for clarity. Black symbols
and curves (Bottom) are measurements of and sine wave fits
to the central velocity of the oscillating Mg+ distributions.
Red curves (Bottom) are 25× the relative velocity of the Mg+

isotopes to that of 24Mg+.

δv
(26)
f = −(8.2 ± 1.1%) v

(24)
f in agreement with the 4%

and 8% increases in the respective isotopic masses. That
is, the species move independently in the (single) electric
field, with weak collisional interactions.

The drag damping is calculated by solving for ω ≡
ωr + iγ in the linearized Poisson equation,

1

r

∂

∂r

(
r
∂δφ

∂r

)
− k2zδφ = −4πqskz

ω

∑
s

n0sv
(s)
f (3)

using a shooting method. Here, the linearized continuity

equation δns = kzn0sv
(s)
f /ω has been used to replace

the perturbed density δns with the species velocity v
(s)
f .

Also, the equilibrium density n0s has radial dependence
at low temperatures when centrifugal mass separation
becomes important.

For plasmas that are both radially uniform and have
weak collisionality (νss′ � ωTG), the collisional drag
damping can be solved analytically as

γ =
1

4ω2
p

∑
s

∑
s′

(Ms′ −Ms)
2

M2
s′

ω2
p,sνss′ , (4)

where ω2
p,s = 4πq2sn0s/Ms is the species plasma fre-

quency, and ω2
p = Σω2

p,s is the total plasma frequency.
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This equation is valid in the regime T >∼ 10−3 eV for
the plasmas considered in these experiments. Equation 4
recovers the electron-ion drag damping results of Lenard
and Bernstein [30] for neutral plasmas. The enhance-
ment of νss′ due to long-range collisions will be seen to
increase the drag damping.

Recent theory [12] has shown that two types of long-
range collisions occur, separated by the newly identified
diffusion scale length d ≡ b(v̄2/b2ν2ss′)

1/5 ∝ T 1/5. In
these experiments, the diffusion scale length is varied
over the range 33 <∼ d <∼ 135 µm by changing the plasma
temperature 10−4 <∼ T <∼ 1 eV. For impact parameters
ρ < d, collisions occur faster than the diffusion timescale,
so they can be regarded as isolated Boltzmann collisions.
In contrast, for ρ > d, multiple weak collisions occur si-
multaneously and particles diffuse in velocity, so Fokker-
Planck theory is required. The predicted slowing-down
rate has the “classical” scaling νss′ =

√
πn0s′ v̄ss′b

2 ln Λ,
where v̄ss′ =

√
2Tµ/Ms, µ = MsMs′/(Ms + Ms′) is the

reduced mass, with an enhanced Coulomb logarithm

ln Λ =
4

3
ln

(
min[rc, λD]

b

)
+ h ln

(
d

max[b, rc]

)
+ 2 ln

(
λD

max[d, rc]

)
.

(5)

The first logarithmic term in Eq. 5 is from classical
short-range collisions, and is equivalent to 5νii/4 [31].
The collisional slowing rate is enhanced by the second
and third terms, which represent long-range Boltzmann
and Fokker-Planck collisions respectively. For repulsive
(like-sign) collisions h = 5.899, increased from 4 due to
“collisional caging” [4]; whereas, h = 0 for attractive
(opposite-sign) collisions in neutralized plasmas.

Predictions of the drag damping theory for both a clas-
sical calculation that assumes only short-range collisions
(dashed), and a calculation including the new long-range
enhanced collisional slowing (solid) are shown in Fig. 2.
Theory is in quantitative agreement with the experimen-
tal results only when long-range collisions are included,
since the slowing rates exceed classical short-range rates
by as much as an order of magnitude. The broadness
of the “clean” plasma theory curve results from a larger
uncertainty in the species fractions.

At T <∼ 10−3 eV, the measured and predicted drag
damping rates decrease from the nominal T−3/2 scaling.
Two effects are responsible for this decrease. First, the
ions begin to centrifugally separate by mass, with the
lighter ions near r = 0. This radial separation reduces
the species overlap, and thus reduces the inter-species
drag. Secondly, the collision rates approach the wave
frequency, so species collide before developing a disparity
in velocity. In essence, the species fluid elements begin
to collisionally lock, which decreases the drag.

Both fluid locking and centrifugal separation are de-
pendent on the plasma density. Figure 4 focuses on the
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FIG. 4. (Color online) Drag damping rates on three plasmas
with different densities and compositions. Symbols are mea-
surements and curves are theory predictions assuming only
classical collisions (dashed) or including long-range enhanced
collisions (solid). Arrows indicate the temperature of peak
measured damping.

narrower temperature regime of drag damping for three
different density plasmas. A similar quantitative agree-
ment with long-range enhanced drag damping theory is
observed as the density is changed by a factor of 7. As the
density increases, centrifugal separation and fluid locking
occur at higher temperatures, and a corresponding in-
crease in the temperature of the measured “peak” damp-
ing is observed. These results suggest that fluid locking
and centrifugal separation are at least in part responsible
for the decrease in the damping from the T−3/2 scaling.

For T <∼ 4 × 10−4 eV, current theory is inadequate.
Global correlation effects become significant, with cor-
relation parameter Γ ≡ q2s/aT

>∼ 0.2 for n0 = 1.9 ×
107 cm−3; here a ≡ (3/4πn0)1/3. Correlations limit
the parallel collisionality [32–34], decreasing the effects
of fluid locking, and increasing the predicted damping
rates. Also, in this centrifugally separated regime, vis-
cosity from like-particle collisions [35] may be important,
which is not included in the current theory.

In summary, measurements of collisional inter-species
drag damping provide the first experimental confirma-
tion of enhanced collisional slowing due to long-range
collisions. Collisional drag damping theory is in quan-
titative agreement with the experimental results for a
range of plasma compositions and densities only when
long-range collisions are included. At low temperatures
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T <∼ 10−3 eV, the observed damping is reduced from the
typical T−3/2 collisional scaling as centrifugal separation
and fluid locking become significant. Correlations and
viscosity may increase the damping at ultra-low temper-
atures.
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