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We introduce a new particle shape which shows preferential rotation in three dimensional homo-
geneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod
with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these
particles with length in the inertial range and their rotations are tracked in a turbulent flow between
oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the
extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional
strain rate with a mean spinning rate that is non-zero. We use Stokesian dynamics simulations of
chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based
on the known response to pure strain, we build a model that gives the spinning rate of small chiral
dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical
simulations. The statistics of chiral dipole spinning determined with this model show surprisingly
good agreement with the measured spinning of much larger chiral dipoles in the experiments.

An incompressible turbulent fluid flow produces ex-
ponential stretching of material line segments. In 1952,
Batchelor conjectured that this must occur [1], and sub-
sequent work has confirmed his conjecture, determin-
ing that their average exponential growth rate is ( =
(eiSije;) ~ 0.127,*, where S;; is the strain rate tensor,
T, the Kolmogorov time, and e; is the orientation unit
vector for the material line [2-4]. One might wonder
how an incompressible flow can stretch material lines on
average since every fluid element must combine exten-
sion with contraction to maintain constant volume. The
answer lies in the Lagrangian advection of material lines
which causes them to preferentially orient along exten-
sional directions of the velocity gradient tensor.

The rate of separation of two material points is the
longitudinal velocity difference, Aw,. Randomly sam-
pled points have (Aw,) = 0 due to incompressibility.
To obtain insights into the dynamics of turbulence from
longitudinal velocity differences at random orientations,
one needs to consider higher moments. For example,
the third moment in the inertial range is related to the
mean energy dissipation rate by Kolmogorov’s 4/5 law:

((Auy)*) = —2(e)r. However, two points advected by the
flow develop a preferential orientation. In this oriented
Lagrangian reference frame, the mean velocity difference
is positive; in particular, for small » the mean velocity

difference is (Au,.)/r = .

The study of stretching of material elements has led
to many insights into the dynamics of turbulence. Many
studies since Richardson have explored two particle dis-
persion, focusing on the rate of separation of two parti-
cles that are initially close together [5]. The ‘advected
delta-vee’ system [6, 7], in which velocity differences are
sampled between two points advected in the flow but con-
strained to maintain fixed distance, has illuminated the
development of intermittency in turbulent flows. The
positive mean stretching rate of vorticity in turbulence
has been shown to result from vorticity becoming aligned
with the extensional directions of the velocity gradient
tensor [8-10].

Recently there has been extensive research on the dy-
namics of rigid non-spherical particles in turbulent fluid
flows [11-14]. Connections between particle dynamics
and fluid stretching suggest that non-spherical particles



may be able to provide revealing probes of fundamental
processes in turbulent flows [15].

In this letter, we introduce a new particle design that
responds to stretching with a preferential rotation in ho-
mogeneous, isotropic turbulence. Measuring rotations of
these particles with multiple high speed cameras allows
us to experimentally observe the mean stretching experi-
enced by orientable elements in turbulent fluid flows. The
particle has two helical ends with opposite handedness as
shown in Fig. 1(a). We call these particles chiral dipoles
because of their similarity to electrical dipoles. The total
chirality of the particle is zero; however, the two ends
with opposite chirality are separated by a fixed distance.
The chiral dipole vector, J, points from the right-handed
end to the left-handed end. A similar particle design was
mentioned by Purcell [16], predicting that such a particle
would sink through a quiescent fluid without spinning.

When placed in a pure strain flow, a high aspect ra-
tio chiral dipole like the one shown in Fig. 1(b) tum-
bles until d points along the extensional strain direction.
The strain flow then couples to the chiral dipole shape
to produce a solid body rotation rate in the direction of
the chiral dipole vector, 2 = Qdcz, where 24 is called
the spinning rate. In a turbulent flow, the particle be-
comes aligned by the strain, and experiences (Qg) > 0

due to the persistence of strain along d. Preferential ro-
tation requires isotropy to be broken. Although the flow
is isotropic on average, instantaneous flow structures are
strongly anisotropic due to the stretching they have ex-
perienced. We show that carefully designed particles can
couple to this local anisotropy to allow preferential rota-
tion.

We use Stokesian dynamics simulations [17] to quan-
tify the rotational motion of chiral dipoles in a pure strain
flow in order to help choose the shapes to fabricate. A
complex shaped particle like a chiral dipole can be mod-
eled with individual spheres, each fixed in their relative
position as shown in Fig. 1(a). The model is allowed
to rotate freely while it is subjected to constant veloc-
ity gradients. The particle shape can be specified by the
pitch of the helices and the aspect ratio, « = I/ D, where
l is the length of the particle and D is the diameter of
the helices. The pitch is defined as the length along the
helix axis for a complete turn divided by D. We know
the particle should have a high aspect ratio, a > 1 to
ensure good alignment with the extensional eigenvectors
of the strain rate tensor [12].

Figure 1(c) and (d) show the mean spinning rate from
the Stokesian dynamics simulations of chiral dipoles in a
two-dimensional pure strain flow with strain rate eigen-
values \; = —A3 and Ay = 0. After an initial orientation
phase of 5 to 10 times the characteristic strain rate time
scale (A\['!), the particle aligns with the extensional eigen-
vector of the strain rate tensor and begins to spin about
its long axis at a rate €4, with the mean value calculated
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FIG. 1. (a) Model of a chiral dipole made of 40 spheres.

The dipole vector d points from right-handed helix to left-
handed helix. (b) Response of a chiral dipole to a pure strain
flow as indicated by the arrows. (c¢) Mean spinning rate (Q4)
as function of the overall aspect ratio, &« = [/D (o: pitch
= 2 ). (d) Mean spinning rate as function of helix pitch (o:
a =10, O0: a = 16). The mean spinning rate is measured in
the Stokesian dynamics simulations and is normalized by the
largest eigenvalue of the strain rate tensor Ay

in this aligned state. Figure 1(c) shows that increasing
the aspect ratio with constant pitch increases the spin-
ning of a chiral dipole in a strain flow. Figure 1(d) shows
the mean spinning rate as a function of pitch with con-
stant aspect ratio and suggests that there is an optimal
pitch near 3.5. This is consistent with the optimal pitch
near 7 found for efficient propulsion by bacterial flag-
ella [18]. So a particle with pitch near 3.5 and very high
aspect ratio should yield the largest coupling of spinning
to the strain rate.

The experiments were performed in a turbulent flow
between oscillating grids [19]. The grids were driven in
phase at a frequency of 1 Hz and 3 Hz in separate runs,
resulting in a Taylor Reynolds number of Ry = 120 and
R) = 183, respectively. The parameters characterizing
the turbulent flow are shown in Table I. We use 3D print-
ing technology [20] to fabricate 2000 chiral dipoles with
aspect ratio o = 10, pitch 2 and a largest dimension of
20 mm, which corresponds to 357 and 727, depending
on the Reynolds number. This particle size places them
in the inertial range of the turbulent flow. These di-
mensions were chosen because the 3D printers were not
able to mass produce structurally stable particles with
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TABLE 1. Flow parameters: Ry = (15aL/v)'/? Taylor
Reynolds number, L = 113/6 energy input length scale, 4 =
((uiui>/3)1/2 rms-velocity, ¢ mean energy dissipation rate,
n = (v*/e)/* Kolmogorov length scale, 7, = (v/€)*/? Kol-
mogorov time scale, v = 2.00 x 107% m? s™! kinematic vis-

cosity.
Experiments
Grid freq. Ry L U € n Ty
[Hz] [mm] [mm s™!] [mm? s3] [mm] [s]
1 120 94 20.4 90 0.546 0.149
3 183 80 55.6 2150 0.247 0.030
Simulations
N Ry L U € n T
2048 400 4.08 1.411 0.687 0.0028 0.0225
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FIG. 2. (a) Cropped image of a chiral dipole from one cam-
era. (b) Projection of the model onto the image plane of the
camera using the measured Euler angles. (c) Time series of
experimentally measured Euler angles (A = ¢, 0 =0, o = 1))
of a chiral dipole along its trajectory.

smallest dimension less than s = 0.8 mm, and we need
D > s in order to allow optical reconstruction of the
particle’s 3D orientation. Spherical tracer particles with
a diameter of 150 pm were used to measure the rms
fluid velocity and to calculate the third order longitu-
dinal structure functions from which we determine the
energy dissipation rate. In order for the chiral dipoles to
be neutrally buoyant, the fluid was density was increased
until p =1.20 g em ™3, which resulted in a fluid viscos-
ity of ¥ =2.00 mm? s—!. The particles are fluorescent
and illuminated with laser beams from four directions to
minimize self-shadowing [20]. Four cameras image the
particles from different angles at a frame rate of 450 Hz.

Using the images and camera calibration parameters
from all four cameras, we can measure the three Euler
angles defining the orientation of the chiral dipole. This
is done by projecting a computer generated, 3D model
of the particle onto the image plane of each camera [21].
A non-linear least squares search finds an orientation of
the 3D model that minimizes the difference between the
four projections of the model and the four experimen-
tal images. The model consists of 30 individual, rigidly
connected rods as shown in Fig. 2(b). Figure 2(c) shows
the measured Euler angles along a typical trajectory. The
full solid-body rotation vector can be measured by fitting
the particles orientation over several time steps along in-
dividual trajectories. The algorithm for finding the Euler
angles is quite stable with respect to small variations in
the particle shape, and it can reject images of particles
that are broken or have larger deviations in the particle
shape. It also could be easily modified to measure other

particles made of slender filaments.

In addition to the experimental measurements, we
use direct numerical simulations (DNS) of homogenous
isotropic turbulence at a Reynolds number of R) = 400
to calculate the motion of a chiral dipole along its
trajectory. The simulation volume includes a total of
N3 = 20483 collocation points and O(107) measurements
of velocity gradients along Lagrangian particle trajecto-
ries for a few large eddy turnover times [22]. The charac-
teristic quantities of the simulations are summarized in

Table 1.

High aspect ratio chiral dipoles can be approximated
by rods and their tumbling rate can therefore be de-
scribed by Jeffery’s equation [23]

. a?—-1
di = Qijdj + m(Sijdj_didkSkldl) ) (1)

where S;; (strain rate tensor) and €2;; (rotation rate ten-
sor) are the symmetric and anti-symmetric parts of the
velocity gradient tensor, respectively. We can use the
velocity gradients from the DNS to integrate Jeffery’s
equation and obtain the orientation valid for a particle
in the dissipation range that has been aligned by the
flow. Equation (1) is only an approximation for chiral
dipoles. Marcos et al. [24] showed that chiral particles
in shear flow experience a translational motion along the
velocity gradient. Two opposite chiral centers that are
spatially separated should show no cross-stream transla-
tional motion, but this same mechanism should produce
a small torque. For our large aspect ratio chiral dipoles,
this torque is negligible compared to the torques captured
by Jetfery’s equation.

In addition to tumbling, a thin rod is also spinning
around its symmetry axis with half of the fluid vorticity
w in that direction. Chiral dipoles have an additional
contribution to their spinning rate from the strain flow,



so we model the chiral dipole spinning rate with
s
Oy = édz + 5 sz”d] (2)
= As + BAL (3)

The constant g is strongly dependent on the particle
shape and describes the strength of the coupling of the
spinning rate to the strain field. An approximate value
for B for our particle shape was obtained from the Stoke-
sian dynamics simulations, where 8 = 0.39. This value of
B is only valid for small particles since it assumes Stokes
flow around the particles. We adopt the compact nota-
tion developed for the analysis of the ‘advected delta-vee’
system by Li and Meneveau [6, 7] to define the longitudi-
nal and transverse velocity gradients with respect to the
particle. The longitudinal component is A = d;S;;d,;
and the transverse component is the magnitude of the
tumbling rate Ay = (d;d;)'/2. We can complete the pic-
ture if we include the spinning due to the fluid vorticity
Ag= %widi. In Eq. 3, the instantaneous spinning rate de-
pends on both the material element stretching rate Ay,
and the vorticity component along the particle axis, Ag.
Because a chiral dipole is equally likely to be parallel or
anti-parallel to the vorticity vector, the mean spinning
due to vorticity is zero, and so the mean value of A, can
be measured directly from (Ar) = (Qq) /5.

Figure 3(a) shows the probability density function
(PDF) of the spinning rate from both experimental mea-
surements and the simulations. The PDFs collapse sur-
prisingly well given the fact that the experiments were
performed with particles in the inertial range and the
simulations are for particles in the dissipation range.
There is a clear asymmetry around zero in both the ex-
perimental and simulation data. The larger probability of
positive spinning rate demonstrates the preferential rota-
tion of chiral dipoles advected in isotropic turbulence. In
the simulations, we can separate the contributions from
strain and vorticity as shown in Fig. 3(b). Since the
mean contribution from vorticity is zero, the contribu-
tion from the strain is responsible for the non-zero mean
spinning rate. In addition to the mean, the PDFs show
a strong positive skewness, S = ((Qq — (Q4))?)/(Q2)3/2.
For the experiments, S = 1.1 at Ry = 120 and S = 1.0
at Ry = 183. For the simulations, S = 0.27. The skew-
ness reflects both the skewness of the longitudinal veloc-
ity differences in the 4/5 law and the complex dynamics
of preferential alignment of slender bodies with vortic-
ity and strain in turbulent flows. The larger skewnesses
in the experiments compared with the simulation are not
fully understood, but are likely to be partly a result of the
much larger size of the chiral dipoles in the experiments.

The shape of the experimentally measured PDFs in
Fig. 3(a) depends on the fit length, which is the number
of time steps used when extracting the solid body rota-
tion rate from the orientation measurements. Shorter fit
lengths include more noise from the orientation measure-
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FIG. 3. (a) Probability density function (PDF) of the spin-
ning rate 24 normalized by the standard deviation for both
Reynolds numbers (blue ¢, Ry =120 and red o, Ry =183) and
simulations (green solid line). The gray dashed line shows
experimental data mirrored around 0. (b) PDF of the indi-
vidual contributions from strain, Ay = d;S;;d; (red dashed-
dotted line) and vorticity, As= %wd (blue dashed line) to the
spinning rate g4 (solid green line). The standard deviation
of the simulations is (Q2)'/2? = 0.857, .

ments, leading to larger tails, whereas longer fit lengths
filter out events of large rotational acceleration. Both
experimental curves in Fig. 3 have been measured with
a fit length of 0.57;,.

The results from the DNS show a mean spinning
rate of (g) = 0.0477,'. This is in agreement with
the previously measured material line stretching rate
¢ = 0127 since (Qq) = BC¢. The experimentally
measured mean spinning rate is (€4) = 0.170 & 0.005 7,
((Qq) = .26 £0.01 7,") for Ry =120 (R, = 183) nor-
malized by 7; = \/%*51%7 where u; = ((Auy)?) 2 is the mag-
nitude of the longitudinal velocity difference at separa-
tion [. The eddy turn-over time at scale [ is chosen so
that 7, = 7, for [ = 7. A simple scaling law with the



25 10’

10°

2.0 5

10

N5 *

g 103

310 102

10

0.5 10

0 E= 10°
04 02 0 02 04 06 08

AL/<m2>”2

FIG. 4. Mean trajectories are representing the cyclic behavior
of fluid elements in the phase space spanned by enstrophy, w?
and material line stretching rate Az, from the DNS. The color
map shows the PDF.

mean spinning rate scaling with the eddy turn-over time
at scale | does not hold. The larger than expected spin-
ning rate of the larger chiral dipoles may be explained
by two factors. First, the preferential alignment between
the particle orientation and the extensional eigenvectors
of the coarse grained strain rate tensor likely depends on
particle size. Liithi et al. [25] measured the coarse grained
velocity gradient tensor and showed that the preferential
alignment of vorticity moves toward the maximum ex-
tensional eigenvector as the coarse graining length scale
increases. Second, the coupling constant § may depend
on the particle Reynolds number so that chiral dipoles
spin more efficiently in a turbulent environment than in
the Stokes flow limit. Future work using numerical sim-
ulations of particles with lengths in the inertial range
and experiments using particles with lengths at the Kol-
mogorov scale could clarify how the crossover from dis-
sipation to inertial range scales affects the rotations of
chiral dipoles.

The ability to follow elongated particles through the
flow and observe the preferential stretching they expe-
rience suggests new ways to quantify the dynamic pro-
cesses of the cascade. Figure 4 shows the mean trajec-
tories of fluid elements in the space of enstrophy, w?,
and the material line stretching rate, A;. There is a
clear cyclical pattern with a fixed point at large enstro-
phy and a positive value of the material line stretching
rate. A qualitatively similar cycle has been observed for
the vortex stretching process by Ooi et al. [10] reflect-
ing the similar physics involved in vortex stretching and
material line stretching.

Chiral dipoles experience a preferential rotation direc-
tion in isotropic turbulence. The ability to fabricate par-
ticles with complex shapes and measure their rotational

motion opens the door to the study of a wide variety of
particle shapes beyond the axisymmetric ellipsoids that
have been the focus of most previous work. The mecha-
nism of the preferential rotation is alignment of the slen-
der particles by the fluid strain at the scale of the particle
so that the particles experience extensional strain on av-
erage which produces preferential rotation due to the chi-
ral ends. These measurements highlight the importance
of analyzing turbulent flows in an oriented Lagrangian
reference frame [6, 7]. Future work is needed to clarify the
scale dependence of preferential alignment and rotation.
Study of coarse grained rotation and deformation have
yielded substantial insights into the dynamics of turbu-
lence [25, 26]. Our current experiments and simulations
show partial agreement in the shape of the spinning rate
PDF, but the experiments are limited to inertial range
particle sizes and the simulations are limited to dissipa-
tion range particle sizes. Tools to measure and simulate
particles across the full range of turbulent scales could
provide a powerful new way to analyze the dynamics of
the turbulent cascade process.
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