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A central challenge of physics is the computation of strongly correlated quantum systems. The
past 10 years have witnessed the development and application of the variational calculation of the
two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present
an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in
their computational cost. The advance is based on a low-rank, dual formulation of an important
constraint on the 2-RDM, the T2 condition. Calculations are presented for metallic chains and a
cadmium selenide dimer. The low-scaling T2 condition will have significant applications in atomic
and molecular, condensed-matter, and nuclear physics.

PACS numbers: 31.10.+z

Strong electron correlation in a quantum system occurs
when two or more electronic configurations contribute
significantly and nearly equally to its wave function [1–3].
In many physical systems the number of orbitals partic-
ipating in the strong correlation increases linearly with
system size, which causes the number of significant elec-
tron configurations in the wave function to increase expo-
nentially. Approaches to strong correlation often employ
sophisticated parameterizations of the wave function as
in the Bardeen-Cooper-Schrieffer ansatz for superconduc-
tivity [4–6] or the general formalism of matrix product
states [7]. Notwithstanding, the complexity of strongly
correlated electrons can also be reduced by exploiting
indistinguishability of the electrons together with their
pairwise interactions to express the ground-state energy
as a linear functional of only the two-electron reduced
density matrix (2-RDM) [8, 9]. In a variational calcu-
lation the 2-RDM must be constrained to derive from
the integration of an N -electron density matrix; the con-
straints, known as N -representability conditions [10–15]
can be systematically arranged in a hierarchy where each
level of the hierarchy yields an increasingly tighter lower
bound on the ground-state energy. Applications of the
second level of the hierarchy to strongly correlated sys-
tems, however, have been significantly limited by the
computational complexity of the conditions. In this Let-
ter the computational cost of these conditions is dramat-
ically reduced through a dual formulation with rank re-
duction, realizing more accurate and efficient 2-RDM cal-
culations of strongly correlated quantum systems.

The first level of N -representability conditions, known
as the 2-positivity or DQG conditions [11, 14–18], have
been applied to treat strong electron correlation in many
molecular applications including the metal-to-insulator
transition in molecular chains [19–21], the emergence
of poly-radical character in one- and two-dimensional
polyaromatic hydrocarbons [22–24], conical intersec-
tions and efficient energy transfer in firefly biolumines-
cence [25], and the role of entangled electrons in the re-

duction of a vanadium-oxo transition-metal complex [26]
as well as applications to quantum dots [27] and phase
transitions [28, 29]. Nevertheless, the ground-state en-
ergy and 2-RDM from the DQG conditions can be sig-
nificantly improved by adding constraints from the sec-
ond level of N -representability conditions, known as the
(2,3)-positivity conditions, including the T1 and T2 con-
ditions [13, 15, 30, 31]. Such improvement has been ob-
served consistently in atoms and molecules [24, 30–33]
as well as spin systems including Erdahl [34, 35], Hub-
bard [36–39], Ising [29], and Lipkin [28] spin models.
Unlike the DQG conditions which have a computational
scaling of r4 and r6 in memory and floating-point op-
erations where r is the number of orbitals, the T1 and
T2 conditions have a computational scaling of r6 and r9,
which severely restricts their application to large r. In
this Letter, through two advances (i) a dual formulation
of the variational 2-RDM method as well as (ii) a rank
reduction exploiting the locality of the Coulomb inter-
action, the T2 condition is implemented with the same
computational scaling as DQG. Applications are made
to hydrogen chains and a newly discovered cadmium se-
lenide dimer that are not treatable by conventional cal-
culations of the wave function.
Because electrons are indistinguishable with pairwise

interactions, the energy as a function of the wave function

E[Ψ] =

∫

ĤΨ(1, 2, .., N)Ψ∗(1̄, 2̄, .., N̄)d1d2..dN (1)

can be replaced by the energy as a function of the 2-
RDM [1, 2, 8, 9]

E[2D] =

∫

2K̂ 2D(12; 1̄2̄)d1d2, (2)

where 2K is the reduced Hamiltonian operator
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and

2D(12; 1̄2̄) =

∫

Ψ(1, 2, .., N)Ψ∗(1̄, 2̄, .., N)d3..dN. (4)

The symbol Zk denotes the nuclear charge of kth atom,
rik is the distance between the ith electron and the kth

nucleus, and r12 is the distance between electrons 1 and 2.
An N -electron density matrix must be (i) Hermitian, (ii)
normalized, (iii) antisymmetric upon exchange of a pair
of electrons, and (iv) positive semidefinite. The 2-RDM
in Eq. (2) must obey these fundamental requirements for
a density matrix as well as N -representability conditions
that constrain the 2-RDM to represent an N -electron
density matrix.
In a finite basis set of r spin orbitals the variational

calculation of the ground-state energy as a 2-RDM func-
tional, constrained by the 2-positivity (DQG) condi-
tions [11, 14–17], can be expressed as

minTr(2K 2D) (5)

such that 2D � 0 (6)
2Q � 0 (7)
2G � 0 (8)

Tr(2D) = 1 (9)

in which the elements of the 2D, 2Q, and 2G matrices
are related by linear equations, 2K is the matrix rep-
resentation of reduced Hamiltonian operator in Eq. (3),
and M � 0 indicates that the matrix M is constrained to
be positive semidefinite. A matrix is positive semidefinite

if and only if its eigenvalues are nonnegative. The D, Q,
and G conditions restrict the probability distributions of
two particles, two holes, and a particle-hole pair to be
nonnegative, respectively. Variational calculation of the
2-RDM with the 2-positivity (DQG) conditions can be
solved by first-order semidefinite programming [19, 21]
at a computational scaling of r6 in floating-point opera-
tions and r4 in memory storage.
The lower bound on the ground-state energy from the

2-positivity conditions can be improved by adding condi-
tions from the (2,3)-positivity conditions such as the T1
and the T2 conditions [13, 15, 30, 31]. The T2 condition
can be expressed as

2T � 0 (10)

where

2T ijk
pqs =

∫

(

3Êijk
pqs +

3 F̂ ijk
pqs

)

2D(12; 1̄2̄)d1d2 (11)

with

3Êijk
pqs = â

†
i â

†
j âkâ

†
sâqâp (12)

3F̂ ijk
pqs = â†sâqâpâ

†
i â

†
j âk. (13)

The creation â
†
i and annihilation âi operators create and

annihilate an electron in the spin orbital i. The 3Ê and

3F̂ operators correspond to metric matrices that enforce
non-negativity of the probability distribution of two par-
ticles and one hole and the probabilities distribution of
two holes and one particle, respectively. The sum of these
two operators, however, cancels the 3-body terms, gener-
ating an operator whose expectation value depends only
upon the 2-RDM [15, 31]. The T2 condition is more im-
portant than the T1 condition because it represents the
probability distribution for a mixture of particles and
holes. While the T2 condition can be readily added to
the DQG conditions in the variational 2-RDM calcula-
tion in Eqs. (5-9), it has a much higher computational
cost. Derived by Erdahl [13], the T2 condition was first
implemented by Braams and co-workers [30] at a scaling
of r12 in floating-point operations; shortly afterwards, it
was implemented by the author by first-order semidefi-
nite programming [31, 32] at a scaling of r9 in floating-
point operations and r6 in storage.
Variational 2-RDM theory can also be expressed in

a dual (polar) formulation in which the optimization
is performed with respect to parameters in the N -
representability conditions. In a finite basis set of r spin
orbitals the ground-state energy E is computable by solv-
ing the following dual program

maxE such that Ĥ − E 2Î −
∑

i

2Ôi = 0 (14)

where

Ĥ =
∑

ijkl

2K
ij
kl â

†
i â

†
j âlâk (15)

2Î =
∑

ijkl

â
†
i â

†
j âlâk (16)

and
∫

2Ôi
2D(12; 1̄2̄)d1d2 ≥ 0 ∀

2D(12; 1̄2̄) ∈ P 2
N . (17)

The P 2
N denotes the set of N -representable 2-RDMs. As

the set of necessary N -representability conditions de-
fined by the 2Ôi operators is enlarged, the dual program
converges to an increasingly better lower bound on the
ground-state energy of the Hamiltonian Ĥ in the finite
basis set. By Kummer’s bipolar theorem [12], for an
equivalent set ofN -representability conditions the energy
from the solution of the dual program in Eqs. (14-17)
equals the energy from the primal solution in Eqs. (5-
9). In the limit that a complete set of N -representability
conditions is included the energy from the dual program
converges to the exact ground-state energy of Ĥ .
In the dual formulation, the 2-positivity (DQG) condi-

tions can be imposed by the following set of three linear
operators:

2ÔD =
∑

ijkl

2B
ij;kl
D â

†
i â

†
j âlâk (18)
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2ÔQ =
∑

ijkl

2B
ij;kl
Q âiâjâ

†
l â

†
k (19)

2ÔG =
∑

ijkl

2B
ij;kl
G â

†
i âj â

†
l âk (20)

where

2BD � 0 (21)
2BQ � 0 (22)
2BG � 0. (23)

In the dual formulation the matrix elements of the op-
erators 2Ô are the variational parameters instead of the
2-RDM elements. For N = 2 only the operators 2ÔD

are required to represent (Ĥ −E) with the ground-state
energy E, but for N > 2 additional operators such as
2ÔQ are required. Cances, Stoltz, and Lewin previously
implemented a related dual formulation of the DQG con-
ditions [40]. Similarly, the T2 condition can be added by
the following linear operator

2ÔT2 =
∑

ijkpqs

3B
ijk;pqs
T2

(

3Êijk
pqs +

3 F̂ ijk
pqs

)

(24)

where

3BT2 � 0. (25)

As discussed previously, the three-body operators in the
sum of the 3Ê and 3F̂ operators cancel, producing a
two-body operator. As written, the dual formulation of
the DQG and T2 conditions substituted into Eqs. (14-
17) yields a semidefinite program [19, 21]. Without fur-
ther modification first-order semidefinite programming
can solve the dual program of the DQG conditions or
the dual program of the DQG and T2 conditions at com-
putational scalings similar to the solutions of the primal
programs in Eqs. (5-13).
The computational scaling of the T2 condition in the

dual formulation can be reduced by considering the struc-
ture of the Hamiltonian in Eq. (15). For quantum sys-
tems of electrons both the energy and the interaction
term of the Hamiltonian scale linearly with system size.
Consequently, the number of operators in Eq. (14) that
describe the interaction must also scale linearly with sys-
tem size. Linear scaling of the G and T2 constraints with
system size can be restored by reducing the ranks of the
2BG and 3BT2 matrices to scale linearly with r, known
in convex optimization as rank reduction [41, 42]. If at
the solution the positive semidefinite matrices 2BG and
3BT2 have a low rank, then rank reduction does not af-
fect the final solution of the semidefinite program. The
rank reduction is imposed through a low-rank matrix fac-
torization [19, 43–45]

2B
ij;pq
G =

r
∑

m

Cij
mCm

pq (26)

TABLE I. Correlation energies for a series of hydrogen chains
at 1.5 Å are presented from variational 2-RDM calculations
with DQG, DQGT, and rDQGT (rank reduced) constraints
as well as FCI. FCI calculations are not possible for H20 or
H30, requiring 24 billion and 36 quadrillion (1017) variables,
but both DQG and rDQGT are applicable, requiring 800,000
and 4 million variables, respectively. The rDQGT energies
are within 0.00001 a.u. of the DQGT energies.

Energy (a.u.) Correlation Energy (a.u.)
Molecule Hartree-Fock DQG DQGT rDQGT FCI

H4 -1.844789 -0.17283 -0.16789 -0.16789 -0.16789
H6 -2.773389 -0.26061 -0.24789 -0.24789 -0.24681
H8 -3.702789 -0.34998 -0.32867 -0.32867 -0.32536
H10 -4.632486 -0.43991 -0.40984 -0.40985 -0.40381
H20 -9.281963 -0.89174 − -0.81817 −

H30 -13.931658 -1.34454 − -1.22793 −

Rank reduction on 2BG decreases the computational cost
of the G condition in the dual formulation to r5 floating-
point operations and r3 storage. Furthermore, rank re-
duction of 3BT2 can be used to reduce the cost of the T2
condition to r6 floating-point operations and r4 storage,
which is similar to the scaling of the DQG conditions in
the primal program. A similar rank reduction can be
performed for the T1 condition.

To illustrate, we apply the dual formulation variational
2-RDM theory to a series of hydrogen chains as well as
a cadmium-selenide monomer and dimer. The ground-
state energy is computed subject to the DQG and DQG
plus T2 (DQGT) conditions by solving the dual pro-
gram in Eqs. (14-17). Furthermore, we implement a
rank-reduced version of the DQGT conditions, denoted
rDQGT, in which the G and T2 conditions are rank re-
duced by low-ranked factorization. The DQG, DQGT,
and rDQGT calculations use both spin and spatial sym-
metries [31]. The cadmium-selenide monomer and dimer
are treated by [6,12] and [12,24] complete active-space
calculations with respect to the Hartree-Fock orbitals.
The notation [X,Y] indicates that X electrons in Y or-
bitals are correlated beyond mean field. Energies are
compared with those from full configuration interaction
(FCI) in the case of a hydrogen chains and with complete-
active-space configuration interaction (CASCI) [46] in
the case of the cadmium-selenide monomer.

Hydrogen chains exhibit a strongly correlated metal-
to-insulator transition as the hydrogen atoms are sepa-
rated equally [47]. Table I presents the correlation en-
ergies for a series of hydrogen chains at 1.5 Å computed
by DQG, DQGT, and rDQGT and compared with FCI.
The correlation energy at 1.5 Å is difficult to describe be-
cause the chain is in the middle of the metal-to-insulator
transition after the onset of strong electron correlation.
At 1.5 Å single-reference methods such as coupled clus-
ter singles-doubles and parametric 2-RDM methods ei-
ther fail to converge or yield unphysical results [19–21].
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FIG. 1. The crystallographic structure of the (Cd2Se
−2

3
)2

dimer is displayed.

TABLE II. The numbers of variables in the 2-RDM and FCI
calculations are shown. Rank reduction in the dual formula-
tion (rDQGT) reduces the number of variables from DQGT
by two orders of magnitude for the monomer and two-and-
a-half orders of magnitude for the dimer. Furthermore, the
rDQGT calculations require slightly fewer variables than the
DQG calculations for both the monomer and the dimer.

Number of Variables
Molecule DQG DQGT rDQGT FCI

Cd2Se
−2

3
1.8× 105 1.4× 107 1.5× 105 8.5 × 105

Cd4Se
−4

6
3.0× 106 9.3× 108 2.4× 106 7.3× 1012

TABLE III. The correlation energies from the 2-RDM and
FCI calculations are shown. As in hydrogen chains, the
rDQGT energies significantly improve upon the DQG energies
despite their similar computational costs. For the monomer
the rDQGT energy is only 0.00002 a.u. below the DQGT
energy.

Energy (a.u.) Correlation Energy (a.u.)
Molecule Hartree-Fock DQG DQGT rDQGT FCI

Cd2Se
−2

3
-17825.37999 -0.14235 -0.13152 -0.13154 -0.12733

Cd4Se
−4

6
-35650.55450 -0.56188 − -0.50863 −

The most important result in Table I is that the ener-
gies from rDQGT are within 0.00001 a.u. of the en-
ergies from DQGT. The rDQGT and DQGT energies
are in equally good agreement at other bond lengths.
Second, the rDQGT energies significantly improve upon
those from DQG with minimal differences in both mem-
ory storage and floating-point operations. For example,
for H4 the energy from DQG is −0.005 a.u. below FCI
while the energies from DQGT and rDQGT are exact;
for H30 the rDQGT energy is above the DQG energy
by more than 0.116 a.u. Both rDQGT and DQG have
similar numbers of variables, and the relative timings of
the rDQGT calculations range from 2 times faster to 2-
to-3 times slower than the DQG calculations. Finally,
while FCI calculations are not possible for H20 or H30

where they would require computing with 24 billion and
36 quadrillion (1017) variables, respectively, both DQG
and rDQGT are applicable, requiring in the case of H20

less than 800,000 variables and in the case of H30 less
than 4 million variables.

Talapin and coworkers [48, 49] have recently shown
that the photovoltaic efficiency of nanocrystalline ar-
rays can be significantly improved with the addition
of Na2Cd2Se3. X-ray crystallography reveals that
the Cd2Se3

−2 anions polymerize to form dimers and
longer polymers that act as electronic “glue” between
nanoparticles, enhancing conductivity through the ar-
ray. Figure 1 shows the crystallographic structure of the
dimer [49]. Eigenvalues of the 1-RDM, known as natu-
ral occupation numbers, from 2-RDM calculations with
DQG conditions reveal that the monomer and the dimer
are strongly correlated. The observation of strong corre-
lation is consistent with their experimental role as con-
ductors [48, 49]. Here we present dual calculations of the
correlation energies with the DQG, DQGT, and rDQGT
conditions where the monomer and dimer are treated in
[6,12] and [12,24] active spaces.

The number of variables required by the calculations,
presented in Table II, shows that rDQGT reduces the
number of variables from DQGT by two orders of magni-
tude for the monomer and two-and-a-half orders of mag-
nitude for the dimer. Furthermore, the rDQGT calcula-
tions require slightly fewer variables than the DQG cal-
culations for both the monomer and the dimer. While
rDQGT and CASCI have relatively similar numbers of
variables for the monomer, CASCI of the dimer, if possi-
ble, would require 7 trillion variables. Correlation ener-
gies are shown in Table III. For the monomer the rDQGT
energy is only 0.00002 a.u. below the DQGT energy. As
in hydrogen chains, the rDQGT energies significantly im-
prove upon the DQG energies. Although the presented
calculations are performed in a minimal basis set with-
out counter ions, we observe that, while the Hartree-Fock
energies do not predict binding, the addition of the elec-
tron correlation energy is sufficient to stabilize the dimer
relative to two monomers.

Strongly correlated quantum systems from molecules
to spin systems like the Hubbard and Erdahl models have
been accurately treated by the variational 2-RDM calcu-
lations with the T2 N -representability condition. How-
ever, the computational cost of the T2 condition has lim-
ited its application to treat strong electron correlation in
larger systems. In this Letter a dramatic reduction in
the computational scaling of the T2 condition has been
presented through a low-rank dual formulation where the
rank reduction is based on the locality of the Hamilto-
nian interaction. We observe in computations on both
hydrogen chains and a cadmium selenide dimer that the
rank reduction does not affect the accuracy of the com-
puted energies. The maximum error for the rank reduc-
tion was 2 × 10−5 a.u. Future extensions of the present
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work will (i) improve the efficiency of the implementa-
tion (the current version was largely written in the inter-
pretive language rather than a compiled language) and
(ii) compute the 2-RDM from the dual solution. The
present work also provides an efficient dual framework
for the addition of constraints beyond T2 from the hierar-
chy of N -representability conditions of Ref. 15. The dual
description has had an important role in 2-RDM the-
ory in the development of both N -representability condi-
tions [1, 2, 11–13, 15, 34] and semidefinite programming
algorithms [16, 19, 21, 30, 40, 50]. Here the dual descrip-
tion in combination with rank reduction has been applied
to enhancing the efficiency of the T2 condition. The low-
scaling T2 condition in variational 2-RDM theory will
become a standard tool for the accurate treatment of
strong electron correlation with applications to molecu-
lar quantum systems throughout physics and chemistry.
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and AFOSR for their generous support.
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