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We investigate novel transport phenomena in a chiral fluid originated from an interplay between
a vorticity and strong magnetic field, which induces a redistribution of vector charges in the sys-
tem and an axial current along the magnetic field. The corresponding transport coefficients are
obtained from an energy-shift argument for the chiral fermions in the lowest Landau level (LLL)
due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear
response theory. Based on consistent results from the both methods, we observe that the trans-
port coefficients are proportional to the anomaly coefficient and are independent of temperature
and chemical potential. We therefore speculate that these transport phenomena are connected to
quantum anomaly.

INTRODUCTION

A number of intensive and extensive studies have
shown that the dynamics of chiral fermions in various
systems manifests itself in anomalous transport phenom-
ena induced by the quantum anomaly. The broad set of
such systems includes the primordial electroweak plasma
in the early universe [1], the QCD matter created in the
relativistic heavy-ion collisions [2], and newly invented
condensed matter systems - Weyl and Dirac semimetals
[3, 4] (see also Refs. [5–7] for recent reviews).

One prominent example of such anomalous trans-
port phenomena is known as the Chiral Magnetic Effect
(CME) [8, 9], that is, an induction of a vector (electric)
current in response to a magnetic field B. In the presence
of a chirality imbalance quantified by the axial chemical
potential µA, the vector current is induced along B as

jV,CME = qfCAµAB , (1)

where qf is the electric charge of the chiral fermion and
CA = 1/2π2 is the nonrenormalizable coefficient charac-
terizing the chiral anomaly relation

∂µj
µ
A = q2fCAE ·B . (2)

The CME current has been investigated by various theo-
ries and methods which consistently confirm Eq. (1) (see
Refs. [5, 9] for reviews). This indicates the universality
of CME attributed to the topological nature of the chiral
anomaly.

It is also known that the magnetic field induces not
only the vector current but also an axial current. Namely,
the Chiral Separation Effect (CSE) [10] emerges in the
presence of a vector chemical potential µV as

jA,CSE = qfCAµVB . (3)

A vorticity in a chiral fluid plays a similar role as that
of the magnetic field, and hence induces anomalous vec-
tor and axial currents, – this is referred as the Chiral

Vortical Effect (CVE) [2, 11–13]. The CME and CVE
have been understood on the equal footing within the
framework of anomalous hydrodynamics from the second
law of thermodynamics [14].

It should be emphasized that the above studies are de-
voted to the separate effects of the magnetic field B or
the vorticity ω. In the pioneering hydrodynamic analy-
sis with the anomaly [14], both vorticity and magnetic
field are accounted as the first order in the gradient ex-
pansion. Consequently, the coupling between B and ω is
dropped as a higher-order effect in that systematic frame-
work. However, in the context of magnetohydrodynam-
ics, the magnetic field is not screened in a medium, and
its strength can be much larger than the gradients, sug-
gesting the importance of going beyond the conventional
gradient expansion.

In this letter, we will show that the interplay between
the vorticity and strong magnetic field induces a local
vector charge density

∆j0V = qf
CA
2

(B · ω) , (4)

where the vorticity is defined by ω = 1
2∇ × v. Below,

Eq. (4) will be consistently derived both from an analy-
sis of the energy shift by a spin-vorticity coupling in the
lowest Landau level (LLL) and from a diagrammatic com-
putation on the basis of the Kubo formula. Remarkably,
∆j0V in Eq. (4) is proportional to anomaly coefficient CA,
and does not depend on temperature and chemical po-
tential. This suggests a connection to the underlying
quantum anomaly as discussed below.

It is worth pointing out that Eq. (4) does not cre-
ate a globe vector charge, i.e.,

∫
d3x∆j0V = 0. This

can be seen as
∫
d3xB · ω = 1

2

∫
d3x∇ · (v × B) =

1
2

∫
∂V
dS · (v ×B) = 0 for a homogenous magnetic field

B . As usual, we assume that the flow velocity v van-
ishes sufficiently fast at the asymptotic region. Therefore,
Eq. (4) indicates a redistribution of the vector charge in
the system. In general, due to the inherent inhomogene-
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ity of the vorticity, Eq. (4) will induce intriguing charge
distribution patterns in a chiral fluid.

We will also show that, accompanying the induction of
the local vector charge imbalance (4), a new contribution
to the axial current emerges as

∆jA = |qf |
CA
2

(B · ω) B̂ , (5)

where B̂ = B/|B| is the unit vector along the magnetic
field. This is an analogue of CSE (3) induced by the
imbalance of vector charge µV . Here, it is remarkable
that the axial current is dynamically generated without
an initial finite value of µV .

The generation of the vector charge density in chiral
media is also discussed in condensed matter physics on
the basis of the realization of an effective axial gauge field
[15, 16]. However, to the best of our knowledge, Eqs. (4)
and (5) are new in literature. Since the vorticity is one
of the most important dynamical variables in magneto-
hydrodynamics, its coupling to the strong magnetic field,
indicated by Eqs. (4) and (5), should be incorporated in
anomalous magnetohydrodynamics (see also Eq. (21) be-
low). Results reported in this letter clearly open a new
avenue for studying the intriguing interplay occurring in
a wide variety of chiral media in strong magnetic fields.

PHYSICAL PICTURE

Prior to performing an explicit diagrammatic analysis,
we first provide a physical picture as to why the vorticity
would induce a local vector-charge density when coupled
to a magnetic field.

We shall consider chiral fermions in the presence of
a static and homogeneous magnetic field B. The en-
ergy spectra of chiral fermions are discretized into the
Landau levels (LLs). We next turn on a slowly vary-
ing velocity field v which leads to a nonzero vorticity
ω = 1

2∇ × v. After a sufficiently long time, each fluid
cell reaches a local equilibrium with the single particle
distribution function given by f(ε, ω) = f0(ε′) where f0
denotes the equilibrium distribution function. Our key
observation is that the vorticity shifts the single particle
energy from ε to ε′ by an amount ∆ε ≡ ε′ − ε = −S · ω.
Here, S is the intrinsic angular momentum (spin) car-
ried by fermions. Such an energy shift due to the spin-
vorticity coupling can be derived by observing the shift of
the single-particle Hamiltonian in a rotating frame [17].
The energy shift also naturally arises in the equilibrium
fermion distribution by computing the distribution func-
tion which maximizes the entropy [11, 18] or by working
out a constraint imposed by the detailed balance [19].
In the every higher LL, the spin-vorticity coupling splits
the degenerated spin states into the opposite directions,
so that these effects cancel at the linear order in ω when
averaging over the spin. We will therefore concentrate

on the unique grand state, i.e., the lowest Landau level
(LLL).

In the LLL, the spin directions of both right and left
handed particles are frozen in the same direction along
the magnetic field SR/L = 1

2 sgn(qf )B̂, and those of an-
tiparticles are oriented in the opposite direction. Conse-
quently, the energy shift in the LLL has no dependence
on the chirality and is given by

∆ε±LLL = ∓1

2
sgn(qf ) B̂ · ω , (6)

where the upper and lower signs refer to a particle and
antiparticle, respectively. Below, we take B = B ê3 with-
out loss of generality.

We are now ready to compute the change of the density
of chiral fermions nR/L due to the vorticity. As explained
above, we only need to consider the contributions from
the LLLs where the fermion dynamics is reduced to the
(1+1) dimensional along B. Expanding f0(ε′) up to the
linear order in ∆ε, and using the linear dispersion relation
of the right-handed LLL fermion, i.e., εLLL = +p3, we
find

∆nR =

(
|qf B|

2π

)[
∆ε+LLL

∫ ∞
0

dp3

2π

∂ f0(p3)

∂p3

+∆ε−LLL

∫ 0

−∞

dp3

2π

∂ f̄0(p3)

∂p3

]
= qf

CA
4

(B · ω)
[
f0(0) + f̄0(0)

]
= qf

CA
4

(B · ω) . (7)

Here, the factor of |qfB|/2π is the density of states
in the LLL per unit transverse area. The Fermi-
Dirac distribution functions of particles and antiparti-
cles are given by f0(ε) = 1/[e(ε−µ)/T + 1] and f̄0(ε) =
1/[e−(ε−µ)/T + 1], respectively. We have used the fact
that f0(∞) = f̄0(−∞) = 0. Remarkably, one finds
an identity f0(0) + f̄0(0) = 1, which is independent of
temperature T and chemical potential µ. Consequently,
the last line in Eq. (7) is also independent of T and µ.
For the left-handed fermions with εLLL = −p3, a sim-
ilar computation leads to ∆nL = ∆nR. Therefore, we
find ∆nV = ∆nL + ∆nR = qfCA(B · ω)/2. This is the
aforementioned result shown in Eq. (4).

Furthermore, since the chiral fermions in the LLL are
moving along ê3 with the speed of light, the generation
of ∆nR,L also induces currents ∆j3R = sgn(SR)∆nR and
∆j3L = −sgn(SL)∆nL. Therefore, from Eq. (7), we find

an axial current ∆j3A = ∆j3R−∆j3L = |qf |CA(B ·ω)B̂/2.
This verifies Eq. (5). On the other hand, the vector cur-
rent vanishes ∆j3V = ∆j3R + ∆j3L = 0. Alternatively, one
might also interpret the amount of the energy shift (6)
as an effective chemical potential ∆µR,L = −∆ε+LLL
(see also Ref. [20] for a discussion on the analogy be-
tween rotating and charge density). Plugging the effec-
tive vector chemical potential ∆µV = (∆µR+ ∆µL)/2 =
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sgn(qf )ω · B̂ into the CSE current (3), we again find the
generation of the axial current (5) along the magnetic
field. Note that the sign of the axial current depends
only on the direction of the vorticity and is independent
of that of the magnetic field.

Importantly, since Eq. (7) and thus Eq. (4) manifestly
depend on the anomaly coefficient CA, but neither T nor
µ, it is natural to speculate that the form of Eq. (4)
is nonrenormalizable and is tied to the chiral anomaly.
In the subsequent section, we will verify Eqs. (4) and
(5) by an explicit field-theoretical computation, and pro-
vide a further evidence on the connection to the quantum
anomaly.

DIAGRAMMATICAL COMPUTATIONS

We now perform the field-theoretical computation. We
will consider the response of the chiral medium to the
vorticity ω in the presence of external magnetic field.
An inhomogeneous velocity field v(x) may be mimicked
by turning on a fictitious gravitational field ds2 = dt2 +
2v · dxdt − dx2, i.e., g0i(x) = δijv

j(x). Therefore, the
Fourier representation of Eq. (4) is cast into

j0V =
λ

2
εljk B̂l (iqj) g0k , (8)

where we used ω = 1
2∇×v, and λ is the transport coeffi-

cient to be computed below. We again take the direction
of the magnetic field to be B = Bê3 and specify an inho-
mogeneous velocity profile as v = v(x1)ê2 or equivalently
an inhomogeneous perturbation of the metric as δg02(x1).
Inverting Eq. (8), we find the Kubo formula

λ = (−2i) lim
q→0

[
lim
ω→0

∂

∂q1
G0,02

R (ω, q)

]
, (9)

with the retarded Green’s function (see Fig. 1):

G0,02
R (x− x′) ≡

〈
j0V (x)T 02(x′)

〉
θ(t− t′) . (10)

A similar Kubo formula was used to study the CVE with-
out an external magnetic field in Ref. [21].

We now evaluate the Green’s function (10) in a
weak coupling theory. The vector current and energy-
momentum tensor of Dirac fermions are given by

jµV(x) ≡ Ψ̄(x)γµΨ(x), (11a)

T 0i(x) ≡ i

2
Ψ̄(x)(γ0Di + γiD0)Ψ(x) , (11b)

where gµν = diag(1,−1,−1,−1) and γ5 ≡ iγ0γ1γ2γ3.
The covariant derivative Dµ = ∂µ + iqfA

µ
ext(x) includes

the gauge potential Aµext(x) for the magnetic field B.
We consider the one-loop diagram composed of the

dressed Fermion propagators in the external magnetic

FIG. 1. One-loop diagram for the Kubo formula. The internal
double lines represent the fermions in the LLL.

field. Below, we will restrict ourselves to the contri-
butions from the lowest Landau levels (LLLs). This
is because the anomalous currents such as the CME
current are solely transported by the fermions popu-
lated in the LLL. We therefore project the fermion wave
function into the LLL: Ψ = P+ ψLLL with ψLLL and
P± = (1± isfγ1γ2)/2 being the LLL wave function and
the spin-projection operator with sf ≡ sgn(qfB), respec-
tively.

The coordinate representation of the retarded Green’s
function (10) is written as (cf. Fig. 1):

G0,02
R (x− x′) =

1

2i
tr[ γ0P+SLLL(x, x′)

×γ0
(
D2
x′ SLLL(x′, x)

)
] , (12)

where we have used the fact that the second term of
Eq. (11b) vanishes for the transverse components (i =
1, 2), when the wave function is projected to the LLL.
Here, SLLL(x′, x) = 〈ψLLL(x′)ψ̄LLL(x)〉 symbolically rep-
resents the LLL propagator in the medium and is factor-
ized as [6, 22]:

SLLL(x′, x) = eiφ(x
′,x) S̃LLL(x′ − x) , (13)

where the Schwinger phase is given by

φ(x′, x) = −qf
∫ x′

x

dzµ
[
Aext

µ (z) +
1

2
F ext

µν (zν − xν)

]
, (14)

with F ext
µν = ∂µA

ext
ν −∂νAext

µ . The above integrand is curl-
free, and hence the integral is path-independent. There-
fore, a straightforward calculation gives Dµ

x′ φ(x′, x) =
φ(x′, x){∂µx′ − iqfF

µν
ext ∆xν/2}, where ∆xµ = x′µ − xµ.

Consequently, the Schwinger phases in Eq. (12) cancel
each other as φ(x, x′) + φ(x′, x) = 0. The remaining
parts then depend only on the difference ∆xµ and are in-
dependent of the gauge potential, indicating the manifest
translational and gauge invariances.

With these manifest symmetries, we are now ready to
transform (12) into the Fourier space:

G0,02
R (q) =

∫
d4p

(2π)4
tr
[
γ0P+ S̃LLL(p+ q)

×
(
p2 + isf

|qfB|
2

∂

∂p1
)
γ0 S̃LLL(p)

]
. (15)

Note that S̃LLL is completely factorized into the trans-
verse and longitudinal parts as [6, 23]:

S̃LLL(p‖, p⊥) = 2e
− |p⊥|2

|qfB| S1+1(p‖) , (16)
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where pµ‖ = (p0, 0, 0, p3) and pµ⊥ = (0, p1, p2, 0). This of

course is anticipated from the dimensional reduction in
the LLL. The longitudinal part S1+1(p‖) is the (1+1)-
dimensional Fermion propagator in a medium. At this
moment, its explicit form is not important. The integra-
tion over the transverse momentum p⊥ in Eq. (15) can
be easily performed, and we then arrived at

G0,02
R (q) = isf

|qfB|
8π

(
q1 + isfq

2
)

Π00
R (q‖) , (17)

where q1 and q2 are components of the external momen-
tum qµ.

Remarkably, we find that the retarded Green’s func-
tion G0,02

R , which determines the medium’s response to
the vorticity in (3+1) dimension, is connected to the po-
larization tensor in (1+1) dimension:

iΠ00
R(q‖)≡

∫
d2p‖

(2π)2
tr2D[γ0S1+1(p‖ + q‖)γ

0S1+1(p‖)].(18)

Furthermore, since this polarization tensor Π00
R is related

to the chiral anomaly in (1+1) dimension, it is one-loop
exact and is not subject to any temperature or density
correction for the massless fermion [23, 24]. Here, the
one-loop exact form is given by

Π00
R (q‖) = − 1

π

[ (q3)
2

ω2 − (q3)
2

]
, (19)

where ω ≡ q0. By plugging the result of the Green’s
function (17) and (19) into the Kubo formula (9), the
transport coefficient λ is finally obtained as

λ =
CA
2
qfB . (20)

Inserting λ into Eq. (8), we indeed verify Eq. (4) which
was also obtained from the physical argument presented
in the previous section. We also note that one should
take ω → 0 limit first in Eq. (9) as in the perturbative
computations of other vorticity-induced transport phe-
nomena [21] (see also Ref. [25] for discussions).

The existence of j0V also implies a corresponding term
in the axial current jA = Ψ̄(x)γµγ5Ψ(x). This is due
to the relation between the vector and axial currents in
the LLL, jµA = −sf εµν‖ jV ν with ε03‖ = −ε03‖ = +1. From

this relation j3A = sf j
0
V and the vector charge density

(4), we also verify Eq. (5). Of course, one can reach the
same conclusion by starting out from Eq. (8) with the
replacement of jµV by jµA.

We have so far considered a single-flavor and color-
neutral fermion. Since the flavor dependence appears
only in the overall factor of qf , extension to multi-
flavor cases is simply implemented as the sum of fermion
charges. The color factor Nc for quarks should be in-
cluded just as the overall factors in Eqs. (4) and (5).

SUMMARY AND APPLICATIONS

We investigated novel anomalous transport phenom-
ena in a chiral fluid in the presence of both vorticity
and magnetic field. Our main results are summarized
in Eqs. (4) and (5). Our analyses suggest that the corre-
sponding transport coefficients are, due to the relation to
the chiral anomaly in (1+1) dimension, protected from
temperature and density corrections. The factorization
in Eq. (17) plays a crucial for establishing the relation to
the chiral anomaly. It would be interesting to examine
Eqs. (4) and (5) by different approaches, for example, by
means of the analytic solution of the Dirac equation in a
rotating frame [20], the holographic correspondence [26],
and the Wigner function formalism [27].

It is important to implement our findings into the
“anomalous magnetohydrodynamics” [28]. Casting (4)
into a covariant form, we propose the following realiza-
tion of the magneto-vorticity coupling in the framework
of anomalous magnetohydrodynamics:

uµj
µ
V = n0(T, µ;B) + ∆n , ∆n = CAωµB

µ . (21)

As in the conventional cases, n0 denotes the local equilib-
rium density as a function of temperature T and chemical
potential µ in the absence of vorticity, and uµ is the flow
velocity. The magneto-vorticity coupling is included in
∆n with ωµ ≡ 1

2ε
µναβuν∂αuβ and Bµ ≡ F̃µνuν . As

mentioned in Introduction, this coupling term becomes
comparable in magnitude to the first-order terms in the
presence of strong magnetic fields. Therefore, the mod-
ification (21) should be included into anomalous mag-
netohydrodynamics together with the anomalous terms
already considered in Ref. [14].

Finally, turning to phenomenological applications of
our work, we call attention to the relativistic heavy-ion
collisions where both a strong magnetic field and a ro-
tation of the quark-gluon plasma are created [5]. While
effects of the magnetic field and vorticity have been con-
sidered separately in the heavy-ion phenomelogy, their
interplay has been overlooked up to now. It is also in-
teresting to investigate effects of the coupling between
magnetic fields and rotations of compact stars.
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