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Doubly magic optical trapping for Cs atom hyperfine clock transitions

A. W. Carr and M. Saffman
Department of Physics, 1150 University Avenue,
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We analyze doubly magic trapping of Cs hyperfine transitions including previously neglected
contributions from the ground state hyperpolarizability and the interaction of the laser light and
a static magnetic field. Extensive numerical searches do not reveal any doubly magic trapping
conditions for any pair of hyperfine states. However, including the hyperpolarizability reveals light
intensity insensitive traps for a wide range of wavelengths at specific intensities. We then investigate
the use of bichromatic trapping light fields. Deploying a bichromatic scheme, we demonstrate doubly
magic red and blue detuned traps for pairs of states separated by one or two single photon transitions.

PACS numbers: 37.10.Jk, 06.30.Ft, 37.10.Gh

The international primary standard for time is the Cs
atom ground state hyperfine clock transition |3, 0〉 ↔
|4, 0〉 which is defined to have a frequency of 9192631770
Hz. Coherent control of alkali atom clock states is of
great interest for precision measurements[1] and for en-
coding neutral atom qubits for quantum computation
experiments[2]. Although the clock states have excellent
coherence properties in a field free environment, fluctu-
ations of optical and magnetic trapping and bias fields
lead to differential shifts of the clock state energies caus-
ing decoherence.

Much recent work has been devoted to finding magic
trapping conditions for which variations of external fields
do not lead to a differential shift δE of the clock state
energies. For alkali atom hyperfine transitions there
are magic conditions for hyperfine Zeeman states with
MF 6= 0[3–6] which eliminate sensitivity to trapping light
intensity noise but are still sensitive to magnetic noise
(∂δE/∂Ω2 = 0, ∂δE/∂B 6= 0 with Ω2 proportional to the
light intensity and B the magnetic field). There are also
magic conditions for states with MF = 0 which are insen-
sitive to light fluctuations at the cost of increased sensi-
tivity to magnetic noise(∂δE/∂Ω2 = 0, ∂δE/∂B ≫ 0)
due to the requirement of a relatively large magnetic
bias field of several Gauss[7–9]. In [10, 11] doubly magic
traps were proposed which use MF 6= 0 states with el-
liptically polarized light to cancel the sensitivity to both
light intensity and magnetic field noise (∂δE/∂Ω2 = 0
and ∂δE/∂B = 0). We assume, as is normally done,
that there are no fluctuations of the light polarization
state. These doubly magic conditions were restricted
to certain wavelength ranges and required very precise
preparation of the field polarization state. Doubly magic
conditions have also been found for magnetically trapped
atoms with microwave frequency dressing fields[12, 13].

In this letter we study magic trapping conditions in
optical traps while consistently accounting for the hyper-
polarizability, which is fourth order in the electric field
amplitude, as well as the interaction of the vector po-
larizability with the static magnetic field. As we illus-
trate in Fig. 1 and explain below these terms are im-
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FIG. 1. (color online) Differential shift δE as a function of
trapping light intensity (which is proportional to trap depth)
and magnetic field. a) δE at B = 0 using 2nd order perturba-
tion theory (red) and 4th order (blue) for the Cs clock states
|3, 0〉, |4, 0〉 at λ = 780 nm with σ+ polarized light. Notice
the minimum in δE as a function of the light intensity (trap
depth) which constitutes a magic operating point. b) δE as a
function of the magnetic field with (blue) and without (red)
the third order cross-term for λ = 780 nm, Ω/2π = 100 GHz,
σ+ polarization, and the states |4, 1〉, |3,−1〉.

portant for accurate calculations of the differential shift
δE at typical experimental trap depths. Including these
effects, which were not fully accounted for in previous
calculations, and after an extensive parameter search
we find no parameters for doubly magic trapping in a
monochromatic trapping light field. This suggests that
previously reported doubly magic solutions[10] are not
doubly magic. However, we demonstrate insensitivity to
differential light shifts with only one frequency and pure
circular polarization at specific intensities Ω2

0 for a wide
range of wavelengths (∂δE/∂Ω2|Ω=Ω0

= 0).

Although we have not found doubly magic conditions
with monochromatic trapping light, a bichromatic ap-
proach, following the proposal in [14], does allow for dou-
bly magic trapping for red or blue detuned optical traps.
Our results significantly extend the range of configura-
tions which can be used for doubly magic trapping. In
particular, we can make the the MF = 0 clock transition
|4, 0〉 ↔ |3, 0〉 and the two photon transition |4, 1〉 ↔
|3,−1〉 doubly magic. While we provide a viable and
flexible approach for achieving extended coherence with
trapped alkali atoms we emphasize that our solutions
only give ∂δE/∂Ω2|Ω=Ω0

= 0 and ∂δE/∂B|Ω=Ω0
= 0 at a
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specific trapping intensity Ω2
0. Contrary to previous work

that did not include the hyperpolarizability[9, 10] there is
still a nonzero light induced differential shift of the clock
states at the magic intensity. A consequence of this shift
is that trapped atoms in a thermal motional state which
samples different optical intensities will still experience
small time dependent differential shifts. Furthermore in
the context of high accuracy microwave clocks the clock
frequency will depend on the intensity. Although it is
possible to choose an intensity for which the differential
shift vanishes (where the blue curve in Fig. 1a) crosses
zero) the derivative of the shift with respect to intensity
will be nonzero. Our inclusion of hyperpolarizability ef-
fects suggests that conditions for which δE|Ω=Ω0

= 0 and
simultaneously ∂δE/∂Ω2|Ω=Ω0

= 0 do not exist.
The calculational approach we follow is to use fine

structure energies at zeroth order and treat the hyper-
fine and Zeeman interactions as perturbations. We use
exact diagonalization to consistently include the fourth
order hyperpolarizability, third order hyperfine-mediated
polarizability, and third order cross-term between the po-
larizability and the Zeeman interaction. An example of a
Hamiltonian between Cs 6s1/2 |F,MF 〉 hyperfine states
|0〉 = |3, 1〉 and |1〉 = |4, 1〉 is given in Eq. (1). Though
these states are not ideal for magic conditions, for the
case of light that is circularly polarized in the plane per-
pendicular to the magnetic field which defines the quanti-
zation axis, their analysis reduces to a simple 2×2 matrix
which serves to elucidate our procedure for searching for
doubly magic traps. Our model Hamiltonian for these
states is

H =

(

Vhf,0 + V00 + β00 + Z00 V01 + β01 + Z01

V01 + β01 + Z01 Vhf,1 + V11 + β11 + Z11

)

.

(1)
Here Vhf,i is the diagonal hyperfine interaction, Vii, Vij

arise from the quadratic polarizability due to the trap-
ping light, βii, βij are from the third order diagonal
and off-diagonal hyperfine-mediated polarizability, Zii

are the first order diagonal Zeeman shifts, and Zij

is the magnetic dipole coupling due to the external
magnetic field. For all calculations we include the
6p1/2, 6p3/2, 7p1/2, 7p3/2 levels, excited ns1/2 states up
to 14s1/2 and the counter-rotating terms. For states
with different MF values or elliptically polarized light
the Hamiltonian may have larger dimension and is con-
structed using the methods detailed in the supplementary
material[15] with analysis based on numerical diagonal-
ization.
The eigenvalues of (1), replacing the diagonals by

∆E0,∆E1, are

δE1,0 =
∆E0 +∆E1 ±

√

4(V01 + Z01)2 + (∆E1 −∆E0)2

2

where we ignore β01 for the moment since V01 ≫ β01.
In the limit where the hyperfine interaction dominates
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FIG. 2. (color online) Schematic representation of four of the
terms that contribute to the differential shift. From left to
right we have the cross-term of two electric dipole couplings
and a magnetic dipole coupling. This can also happen in
reverse order thus the extra factor of two in Eq. (2). Next
is the fourth order term with four electric dipole couplings.
This is also the crucial term in the bichromatic scheme except
that it then couples to the other ground state that is dressed
by a sideband energy very close to the clock frequency. Third,
is the hyperfine-mediated polarizability term that is diagonal
in the ground state hyperfine interaction (HFI). Last is the
hyperfine-mediated polarizability term involving HFI-induced
mixing of the ground 6s1/2 state and excited ns states.

other perturbations, i.e. (∆E1 −∆E0)
2 ≫ (V01 + Z01)

2,
the differential shift relative to the hyperfine splitting
Vhf,1 − Vhf,0 is

δE = β11−β00+Z11−Z00+2
Z2
01 + 2V01Z01 + V 2

01

∆E1 −∆E0
. (2)

V00 = V11 since the electric dipole operator only cou-
ples to the electronic quantum numbers which are the
same for both states and thus cancel out of the differ-
ential shift. From here we can make the connection to
non-degenerate perturbation theory. The final term on
the right includes the second order Zeeman shift (Z2

01),
the third order cross-term (2V01Z01) and finally a fourth
order hyperpolarizability term (V 2

01). Figure 2 depicts
the physical origin of the higher order terms.
To check our results we calculated δE per unit of

intensity for clock states MF = 0 and light linearly
polarized perpendicular to the quantization axis as in
the experiment of Ref. [5]. In this case the only
non-zero off-diagonal term in (1) is Z01. For 780(532)
nm light they measured −2.27(40) × 10−2(−3.51(70) ×
10−4)Hz/W/cm2 compared to our values of −2.02 ×
10−2(−4.08 × 10−4)Hz/W/cm2. In both cases we are
within experimental error bars and differ by no more than
15%.
We proceed to write down a system of approximate

equations that guide the search for doubly magic con-
ditions. To isolate the dependence on the amplitude
of the optical trapping field E and the magnetic field
B we make the replacements: Ω = E

~
〈6p1/2||er||6s1/2〉,

β11 − β00 → β(1)Ω2, Z11 − Z00 → µ(1)B, 2
Z2

01

∆E1−∆E0

→
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TABLE I. Intensity magic trap conditions for various wavelengths, light polarizations, pairs of states, and magnetic fields. Also
reported are the first order sensitivities to the magnetic field, and the second order sensitivities to the reduced Rabi frequency.
The polarization is either σ+ or σ

−
and the states column lists MF=4,MF=3. Finally, trap depth for blue detuned traps refers

to the light shift the atom experiences at the bottom of the trap(see [16] for an example of blue traps with nonzero intensity
minimum) rather than the actual depth of the trap. The ground state scalar polarizability is negative for the 780 and 820 nm
cases so the trap depths are positive, i.e. repulsive potentials.

λ (nm) σ states B (G) Ω/2π (GHz) trap depth (MHz) ∂δE
∂B

(Hz/G) ∂2δE
∂Ω2 (10−18Hz−1)

1038 + 0,0 1.4 158.0 -60.0 -2440 2.50
1038 + 0,0 1.0 150.0 -54.3 -2440 2.26
1038 + 0,0 0 129.0 -40.3 -2440 1.60
1038 + 1,-1 1.4 164 -66.5 -3680 2.53
945 + -1,1 1.4 70.8 -23.3 -1000 10.4
820 + 0,0 1.4 70.4 35.5 -3680 22.4
780 + 0,0 1.4 124 49.2 -2720 4.68
780 - 1,-1 1.4 85.6 24.3 1760 2.10

µ(2)B2, 4 V01Z01

∆E1−∆E0

→ β(2)Ω2B, 2
V 2

01

∆E1−∆E0

→ β(4)Ω4.
Then the differential shift is

δE = µ(1)B + µ(2)B2 + β(1)Ω2 + β(4)Ω4 + β(2)Ω2B (3)

and after taking the appropriate derivatives

dδE

dB
= µ(1) + 2µ(2)B + β(2)Ω2, (4)

dδE

dΩ2
= β(1) + β(2)B + 2β(4)Ω2. (5)

Doubly magic trapping occurs when both derivatives si-
multaneously vanish for a set of parameters (Ω, B), thus
eliminating the first order sensitivity to both electric and
magnetic fields. We emphasize that solving the above
equations only yields approximate results since we have
suppressed additional small terms arising from the higher
order dependence of the coefficients on Ω and B. The ac-
curate results reported in the tables are found from diag-
onalizing the ground state Hamiltonian (1) and looking
for local minima (or maxima) in the differential shift cor-
responding to a doubly magic operating point.
It is the implications of the cross-term with coefficient

β(2), and β(4) the hyperpolarizability, that drive the novel
results in this paper. The cross-term has been partially
included before in [10] where doubly magic wavelengths
were calculated by determining the magic magnetic field
with no light interacting with the atoms, i.e. ignoring
the last term in Eq. (4). However, this neglects the fact
that through this term the light intensity also affects the
magic magnetic field value, that is, we have a coupled
system of equations. In addition the effects of the fourth
order term at the end of Eq. (5) have not previously been
accounted for. As we will show, this term cannot be ne-
glected and the implication is that there exist not magic
wavelengths, but magic intensities for most wavelengths.
The influence of the hyperpolarizability on magic

trapping conditions is known to be important for optical
atomic clocks[17], but has been neglected in previous
analyses of microwave clocks. As an exmaple an optical

dipole trap for Cs atoms based on a modest power
of 20 mW at λ = 1.06 µm focused to a waist (1/e2

intensity radius) of w = 2 µm gives a field strength
> 106 V/m and a trap depth of 15.5 MHz. At this
field strength the effect of the hyperpolarizability on
alkali atom ground states cannot be neglected[18]. For
detunings large compared to the excited state hyperfine
structure we can estimate the magic intensity |Ω0|

2 by
equating the contributions to the differential shift from
the fourth order hyperpolarizability and the hyperfine-
mediated polarizability. We have β(1) ∼ −ωqΩ

2/∆2

and β(4) ∼ Ω4/(ωq∆
2), with ωq the hyperfine splitting

of the two states and ∆ the detuning from the excited
state. Thus the magic intensity scales as I0 ∼ Ω2

0 ≃ ω2
q .

The implication is that the hyperpolarizability becomes
important at lower intensities in atoms with smaller
ground state hyperfine splitting, e.g. Rubidium com-
pared to Cesium. Figure 1 illustrates the importance of
the fourth order and cross-terms.

The primary lesson to be drawn from these two terms is
that it is inappropriate to talk about magic wavelengths.
Even if searching purely for magic conditions in one field
the operating laser intensity and magnetic fields are inter-
dependent and the system is now nonlinear in the inten-
sity. Adjusting the laser intensity then tunes the relative
strength of these terms and allows for magic conditions
at a more diverse set of wavelengths.

Unfortunately we were unable to find doubly magic
conditions for monochromatic trapping light of any wave-
length and polarization for any pair of states. It is possi-
ble that some elliptical polarization we did not check or
just a more precise calculation could turn up something
useful. What we can say is that for most wavelengths,
magnetic field strengths, pairs of states and polarizations
there is a magic intensity where first-order sensitivity to
the light intensity is zero. Table I provides examples of
magic intensities for various atomic and field parame-
ters, as well as the residual field sensitivities. As one can
see, despite not being truly doubly magic, the sensitivity
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TABLE II. Doubly magic conditions for red and blue detuned traps for different wavelengths, pairs of states, sideband strengths
(ratio of sideband field amplitude to carrier field amplitude), sideband frequency, and the residual sensitivities to field fluctua-
tions.

λ (nm) states SB strength ωs/2π (GHz) B (G) Ω/2π (GHz) trap depth (MHz) ∂2δE
∂B2 ( Hz

G2 )
∂2δE
∂Ω2 (10−18Hz−1)

1038 0,0 0.1 9.15 1.35 88.3 -19 854 2.49
1038 0,0 1 8 1.39 63.6 -19.5 854 4.97
1038 1,-1 1 8 3.63 80.7 -32.2 801 7.5
1038 -1,1 0.1 9 1.78 135 -43.5 801 2.59
920 0,0 0.1 9.185 0.364 17.7 2.26 854 18.5
920 0,0 0.1 9.15 1.54 27.2 -5.89 854 34.6
780 0,0 0.1 9.185 0.27 29.9 2.89 854 3.56
780 0,0 0.1 9.17 0.798 51.4 8.56 854 4.1

to the magnetic field can be quite small for some magic
intensity conditions, in particular at 945 nm with the un-
orthodox |4,−1〉 and |3, 1〉 states. If one can stabilize the
magnetic field to 100 µG then the above states can have
differential shifts of about 0.1 Hz.
It is worth pointing out some of the trends in Table

I. Increasing the bias magnetic field increases the trap
depth of the magic intensity for the states 0, 0. Similarly,
increasing the detuning increases the trap depth and de-
creases the residual sensitivity to the trapping light. We
chose 1.4 G for the magnetic field since it is very close
to the magic magnetic field for the MF = 0 states with
no trapping light and thus elucidates how important a
proper accounting of the aforementioned cross-term is
for accurately assessing magic conditions.
In order to achieve true doubly magic traps we adopt

the idea of Radnaev et al.[14]. They envisioned applying
another laser that would couple the two ground 6s hyper-
fine levels via a two-photon transition where the photon
fields differ in frequency by very near the hyperfine split-
ting of the two ground states. Practically, this could be
accomplished by a high frequency phase modulator that
adds a frequency shifted sideband at approximately the
hyperfine ground splitting, e.g. ωs ∼ ωq = 9.192 GHz in
Cesium. Thus, we obviate the need for another laser and
automatically match the intensity profile of the second
light frequency to that of the primary trapping light.
We modify our computational apparatus to incorpo-

rate dressed ground states that differ by plus or minus
a sideband frequency. Essentially, the Hamiltonian ma-
trix grows three fold as for each ground state we add two
levels with identical quantum numbers to the original
except that the diagonal element has ±ωs, the difference
between the carrier and sideband frequencies. The ma-
trix is then populated as before. We include an explicit
example in [15]. A fourth order term that is roughly
V s
ijV

s
ij/(ωq − ωs) arises, where V s

ij uses the field ampli-

tude of the sideband and the carrier, i.e. Ω2 → ΩΩs with
Ωs the reduced Rabi frequency of the sideband. This
term is much like the fourth order term introduced for a
single frequency in that it couples a ground state to the
other ground state and back, but in this case that other
state is a dressed state nearly resonant with the initial

state due to the sideband. The denominator depends on
the difference of the sideband frequency ωs and the clock
frequency ωq. This then gives us two levers with which
to adjust this fourth order term’s magnitude and sign:
the intensity of the sideband and its frequency. We as-
sume pure σ+ polarization for all results regarding the
bichromatic scheme.

Table II presents doubly magic conditions for red and
blue detuned traps with physically feasible parameters.
Bringing the sideband frequency closer to the clock fre-
quency lowers the magic magnetic field, the trap depth
and the residual sensitivity to the trapping light. Re-
ducing the sideband intensity reduces the residual light
sensitivity for a given magic trap depth and magnetic
field. Lastly, the residual magnetic field sensitivity is en-
tirely determined by the pairs of states chosen and even
then is approximately the same for all pairs at the doubly
magic point. Thus, bichromatic trapping light allows for
doubly magic traps with tunable parameters by adjusting
the sideband strength and frequency.

We conclude by reiterating our results for doubly magic
trapping conditions. Our analysis established that the
fourth order Stark shift term is vital to differential Stark
shift calculations at typical operating conditions and fur-
ther explored the implications of the interaction of the
laser and magnetic fields. Recent experiments have mea-
sured the fourth order Stark shift contribution to the
differential light shift with Rb atoms and demonstrated
the importance of this effect[19]. With these tools we
demonstrate light insensitive traps for a wide array of
wavelengths, pairs of states, and bias magnetic fields. We
then extended our analysis to a bichromatic trap with
two optical frequencies separated by an amount similar
to the splitting of the hyperfine ground states in Cesium.
In doing so, we discovered doubly magic conditions in
red and blue detuned traps for states separated by only
one or two photons. These results provide a method for
obtaining insensitivity to trapping lasers and magnetic
field noise that could potentially improve atomic clock
and quantum information experiments. Furthermore, we
have relaxed many of the stringent requirements on wave-
length, polarization, and states previously reported in the
literature, making magic trapping more accessible to fu-
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ture experiments. We anticipate that similar results will
be found for other alkali atom species.

This work was supported by NSF award PHY-1104531,
the AFOSR Quantum Memories MURI, and the IARPA
MQCO program through ARO contract W911NF-10-1-
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