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Adiabatic quantum algorithms represent a promising approach to universal quantum computation.
In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings,
where gaps become extremely small. In open quantum systems, the fundamental robustness of
adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing
associated with the adiabatic quantum search algorithm, when the system is coupled to a generic
environment. At zero temperature, we find that the algorithm remains scalable provided the noise
spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher
order scattering processes render the algorithm inefficient at any finite temperature regardless of the
spectral density, implying that no quantum speedup can be achieved. Extensions and implications
for other adiabatic quantum algorithms will be discussed.

The adiabatic theorem provides a powerful tool to
characterize the evolution of a quantum system under
a time-dependent Hamiltonian. It underlies theoretical
concepts ranging from Landau-Zener transitions [1] to
Berry phase accumulation and experimental techniques
such as adiabatic passage [2]. Adiabatic evolution can
also serve as a platform for quantum information pro-
cessing [3–8]. This paradigm bears some resemblance to
simulated annealing: computation proceeds via smoothly
varying a parameter to hone in on a solution encoded
in the ground state of a specific Hamiltonian. Thus, a
generic adiabatic quantum computation (AQC) proceeds
in three steps. A physical system is first prepared in the
known ground state of a simple initial Hamiltonian. The
Hamiltonian is then adiabatically transformed into the
desired one. Finally, the state of the system is measured
and, assuming adiabaticity, represents the solution to the
encoded question.

Nearly a decade ago, it was shown that AQC and
the canonical circuit model of quantum computation are
equivalent in computational power [9–11]. While the two
models can provably solve the same problems, their phys-
ical implementation and thus their susceptibility to errors
differ significantly. For instance, imperfections of individ-
ual gates will reduce the fidelity of a computation in the
circuit model. In AQC, by contrast, errors may arise due
to non-adiabatic transitions. Furthermore, AQC is af-
fected by noise present in any realistic implementation.
It has been suggested that AQC may be inherently ro-
bust against noise [12, 13] and that the presence of an
environment may even improve performance [14]. Adia-
batic evolution is particularly susceptible to noise when
the gap between the ground state and the excited states is
small. A thorough understanding of the effect of noise on

FIG. 1. Qualitative dynamics of the adiabatic quantum search
algorithm in an open system. The evolution of the system
is coherent below the critical temperature T ∗ (indicated by
the solid curves) and a quantum speedup is available in this
regime. The three curves correspond to different sizesN of the
search space. The parameter η characterizes the noise spectral
density at low frequency ∝ ωη, with η = 1 corresponding to an
ohmic bath. The dependence of T ∗ on η changes qualitatively
at ηc due to scattering processes contributing significantly
when η > ηc. The inset shows the spectrum of the AQS
Hamiltonian for N = 256.

small gaps is therefore desirable. In this Letter, we study
the effect of an environment on the adiabatic quantum
search (AQS) algorithm [3, 15], the adiabatic equivalent
of Grover’s algorithm [16]. While the AQS algorithm in
open systems has been the subject of numerous stud-
ies, a complete understanding of its scalability is miss-
ing [14, 17–25].

Although the AQS algorithm involves a highly non-
local Hamiltonian, we utilize it as a convenient example
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TABLE I. Scaling of the critical temperature T ∗ with the
size of the search space N for a given coupling strength α
between the system and the environment. The scaling of T ∗

is evaluated separately for processes involving one and two
bosons of the bath. For a sub-ohmic environment, the one-
boson processes render the dynamics incoherent even at zero
temperature such that two-boson processes are never relevant.

single-boson processes two-boson processes

η < 1 αT ∗ = 0

η > 1 αT ∗ = O(N (η−2)/2) α2/(2η+1)T ∗ = O(N−1/(4η+2))

of an algorithm exhibiting a single avoided level cross-
ing. In realistic systems with k-local interactions (k ≤ 2
typically), small gaps often arise due to avoided level
crossings between macroscopically distinct states. In this
case, an environment that also acts locally is incapable
of inducing transitions between the two states involved
in the crossing, and it predominantly leads to dephas-
ing. To this end, in our model for the AQS algorithm,
the environment only couples to the dephasing channel.
We show that under these assumptions, the problem of
determining the scalability of the algorithm can be cast
into an implementation-independent form, parametrized
by the minimum gap at the avoided level crossing. Thus,
we expect our conclusions to generalize beyond the AQS
algorithm.

To understand the main result of our work, it is help-
ful to consider the different ways in which the environ-
ment influences the algorithm. One naively expects that
a thermal bath will degrade performance whenever the
temperature exceeds the smallest gap encountered dur-
ing the computation. However, this is not necessarily
the case if the number of thermally accessible states
is small [14]. In the AQS algorithm, there exist two
low-energy states, separated by a large gap from higher
excited states. These two low-lying states undergo an
avoided level crossing (see inset of Fig. 1). It is thus
natural to assume that the environment can thermally
mix these two states but does not give rise to higher ex-
citations. Thermalization may then reduce the success
probability by at most 50%, which can be compensated
for by repeating the algorithm multiple times [14].

Apart from leading to thermalization, the environment
also renormalizes the gap at the avoided crossing. The
effect is best understood by appealing to an analogy
with a double-well system. In this picture, the two low-
energy states of the AQS algorithm are spanned by the
ground states of two wells, which are detuned from each
other by a bias ε and connected by a tunneling rate ∆.
The avoided crossing occurs at zero bias (s = 1/2 in
Fig. 1), for which the energy gap is equal to the tun-
neling rate. As mentioned above, a local environment
predominantly gives rise to dephasing between the wells,

whereas environment-induced transitions from one well
to another are negligible. This dephasing suppresses co-
herent tunneling, which in turn results in a decrease of
the minimum gap. Equivalently, this mechanism may
be viewed as a consequence of the quantum Zeno effect,
where the environment tends to localize the system in
one of the wells by gaining information about its current
state [26]. Coherent tunneling may vanish entirely if the
coupling to the environment is sufficiently strong. We
refer to this as the incoherent regime, as opposed to the
coherent regime, where tunneling persists. The terminol-
ogy reflects the fact that coherent Rabi oscillations can,
in principle, be observed in the coherent regime, whereas
the oscillations are overdamped if the system is incoher-
ent. Any potential quantum speedup is lost in the inco-
herent regime, as discussed in detail below. Conversely,
a quantum speedup is always available in the coherent
regime provided the gap retains the same scaling with
problem size as in a closed system.

In order to identify the relevant regimes, we compare
the tunneling rate with the coupling rate to the environ-
ment. At zero temperature, the coupling rate is given
by the noise spectral density of the environment, J(ω),
evaluated at the gap frequency. The noise spectral den-
sity is assumed to obey a power law at low frequencies,
J(ω) ∝ ωη, where we distinguish between sub-ohmic
(η < 1), ohmic (η = 1), and super-ohmic (η > 1) environ-
ments. For a sub-ohmic environment, the ratio J(∆)/∆
diverges in the limit ∆ → 0, suggesting that the system
is incoherent at the avoided level crossing for large search
spaces. If the environment is super-ohmic, the same rea-
soning predicts that even large systems remain coherent.
This simple argument is indeed correct at zero temper-
ature, while at finite temperature, bosonic enhancement
and two-boson processes lead to significant modifications.
We demonstrate that even for a super-ohmic environ-
ment, a quantum speedup can only be achieved below
a certain critical temperature, whose dependence on η
and the size of the search space is summarized in Tab. I
and Fig. 1. Notably, the critical temperature decays as
a power law with the size of the search space, such that
the AQS algorithm offers no improvement over a classical
algorithm for large search spaces at finite temperature.

We now proceed with detailed calculations. The AQS
algorithm in a closed system is described by the Hamilto-
nian H(s) = E0(1− s) (I− |ψ0〉〈ψ0|) +E0s (I− |m〉〈m|),
where E0 sets the energy scale of the system, |ψ0〉 =

1√
N

∑N
x=1 |x〉 is an equal superposition of all states in the

search space, and |m〉 denotes the marked element to be
found. The parameter s is increased monotonically from
its initial value s = 0 to its final value s = 1. The Hamil-
tonian H(s) can be exactly diagonalized in the two-level
subspace spanned by |m〉 and |m⊥〉 = 1√

N−1

∑
x6=m |x〉,
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where

H(s) =
E0

2
I− 1

2
[ε(s)τz + ∆(s)τx] . (1)

Here, τ i are the Pauli matrices acting on {|m〉, |m⊥〉},
ε(s)/E0 = 2s−1+2(1−s)/N , and ∆(s)/E0 = 2

√
N−1
N (1−

s). The orthogonal subspace is degenerate with constant
energy E0 (see inset of Fig. 1). The spectrum exhibits
an avoided level crossing at s = 1/2, where the gap
is of order O(N−1/2) for large N . As anticipated, the
low-energy Hamiltonian is equivalent to one describing
two wells connected by a tunneling rate ∆ and detuned
from each other by a bias ε. Classically, the computa-
tion time scales linearly with the size of the search space
N , whereas both Grover’s algorithm and the AQS algo-
rithm achieve a quadratic quantum speedup, scaling as
O(N1/2). The latter scaling, set by the inverse of the
minimum gap, is provably optimal [15][27].

To specify the environment, we envision that the
AQS Hamiltonian is implemented using L qubits, where
N = 2L. Each qubit is coupled to an independent,
bosonic bath. We assume throughout that the temper-
ature T � E0/L, which ensures that the dynamics of
the system are restricted to the two lowest-lying levels.
Under these conditions [28], the environment couples to
the low-energy subspace through an effective interaction
of the form

V = τz
∑
k

gk(bk+b†k)+τz
∑
k,l

gkgl
E

(bk+b†k)(bl+b
†
l ), (2)

where bk and b†k are bosonic annihilation and creation op-
erators, gk is a coupling strength, and E an energy scale
proportional to E0. The first term in Eq. (2) describes
absorption or emission of a single boson, while the second
term corresponds to two-boson processes, such as two-
boson emission or boson scattering. Higher-order terms,
which depend on specifics of the higher excited states,
have been neglected since they do not affect our results
qualitatively [28]. We have also dropped terms that cou-
ple to τx,y, representing environment induced transitions
between |m〉 and |m⊥〉, as they are strongly suppressed
in the limit of large N [28].

The bath is characterized by the noise spectral den-
sity J(ω) =

∑
k g

2
kδ(ω − ωk), which follows a power law

at low frequencies, J(ω) = αωη. The parameter α sets
the coupling strength to the environment. Our analysis
is restricted to η > 0 because the effective two-level de-
scription breaks down otherwise [28]. Furthermore, we
assume that the weak-coupling condition J(ω) � E0 is
satisfied for all ω. We emphasize that coupling is only
weak compared to the overall energy scale of the sys-
tem but may be strong compared to the gap between the
low-energy states.

In order to explore the coherence properties of the sys-
tem, we employ a procedure known as adiabatic renor-

malization, which has been widely put to use in the con-
text of the spin–boson model [29]. The method is par-
ticularly powerful as it is valid even for non-perturbative
and non-Markovian environments. Adiabatic renormal-
ization proceeds by eliminating modes of the environment
that are fast compared to the tunneling rate. To a good
approximation these oscillators adiabatically follow the
system thereby reducing the bare tunneling rate ∆ to a
renormalized tunneling rate ∆̃. The case ∆̃ = 0 corre-
sponds to the incoherent regime introduced above, while
in the coherent regime ∆̃ > 0. To compute ∆̃, we first
determine the energy eigenstates in the absence of tunnel-
ing. For the moment, we only consider single-boson pro-
cesses and limit ourselves to the region near the avoided
crossing, where ε(s) ≈ 0. The eigenstates are given by

|τ,n〉 = e−iτ
zS1 |τ〉

∏
k |nk〉, where S1 = i

∑
k
gk
ωk

(bk−b†k),

τ = m,m⊥ (corresponding to τz = ±1), and nk are the
occupation numbers of the bosonic modes. Physically
speaking, the system is dressed by oscillators, whose dis-
placements depend on the state of the system. Oscil-
lators with frequencies much greater than the tunneling
rate will adjust to the state of the system almost in-
stantaneously, while slower oscillators must be accounted
for more carefully. We hence define the renormalized
tunneling rate between the states |m,n〉 and |m⊥,n〉 as
∆̃n = ∆ 〈m,n|τx|m⊥,n〉′, where the prime denotes that
only oscillators with frequencies satisfying ωk > Ω should
be taken into account. Here, Ω is a low-frequency cutoff,
which may be self-consistently determined as Ω = p∆̃n.
The exact value of p is irrelevant in what follows, pro-
vided that p � 1. Due to the dependence of ∆̃n on
the occupation numbers, it is only possible to define a
unique renormalized tunneling rate at zero temperature.
Nevertheless, we can define a typical rate ∆̃ by taking a
thermal expectation value, yielding

∆̃ = ∆ exp

[
−2

∫ ∞
Ω

dω
J(ω)

ω2
coth

ω

2T

]
. (3)

We first consider the above expression at T = 0. For
a super-ohmic environment, the integral in the exponent
remains finite as Ω → 0. For large N , we may set Ω to
zero to a very good approximation such that ∆̃ is propor-
tional to ∆. If the environment is ohmic or sub-ohmic,
the integral exhibits an infrared divergence. There exists
a critical coupling strength α∗ ∝ ∆1−η such that ∆̃ = 0
for all α > α∗. For α < α∗, the renormalized tunneling
rate remains finite [28]. The critical coupling strength
tends to zero as N →∞, showing that the dynamics are
incoherent in the limit of large search spaces consistent
with the discussion above.

The results at finite temperature can be obtained by
very similar arguments. In short, one obtains that ∆̃ is
always finite and proportional to ∆ for η > 2, while for
1 < η ≤ 2 there exists a critical coupling strength of the
form α∗ ∝ ∆2−η/T , where we assumed that T � ∆̃.
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If the coupling constant is fixed, the expression can be
interpreted as an expression for a critical temperature

T ∗ ∝ ∆2−η

α
= O(N (η−2)/2). (4)

This is consistent provided η > 1. In the sub-ohmic
regime, T ∗ cannot be taken much greater than ∆̃ and we
find instead that the dynamics are always incoherent for
a fixed α in the limit of large search spaces. At η = 1, the
existence of a non-zero critical temperature depends on
the value of α. We note that these results, summarized in
the first column of Tab. I, are in agreement with previous
work by Tiersch and Schützhold [22].

Two-boson processes may be treated similarly al-
though they affect the system in a qualitatively differ-
ent manner [30]. There are two kinds of two-boson pro-
cesses: those in which a pair of bosons is absorbed or
emitted, and those in which a boson is scattered be-
tween two modes. Conservation of energy requires that
in two-boson emission/absorption processes both modes
have energies . ∆. By contrast, the scattering processes
can involve pairs of modes with arbitrarily high energy,
provided their energy difference is small. Crucially, the
phase space for boson scattering is independent of ∆ for
large N and remains non-zero as ∆→ 0. The two-boson
coupling strength at finite temperature is thus expected
to be always large compared to ∆ for large N.

To support this argument, we again perform adiabatic
renormalization [28]. We focus on super-ohmic envi-
ronments since single-boson processes already prevent a
quantum speedup in the sub-ohmic case. We further ex-
tend the weak coupling approximation to include bosonic
enhancement, i.e., J(ω)(1 +N(ω))� E0 for all ω, where
N(ω) is the Bose–Einstein distribution. Under these as-
sumptions, two-boson processes only weakly renormalize
the tunneling rate at zero temperature and do not render
the dynamics incoherent. If T > 0, there exists a critical
coupling strength, which is given by α∗ ∝ E∆1/2/T η+1/2,
such that the dynamics are incoherent for any α > α∗.
Clearly, α∗ vanishes as N →∞ regardless of η. This is in
stark contrast to the renormalization due to single-boson
processes alone, where the system remains coherent if
η > 2. At fixed coupling strength, we thus predict a
critical temperature

T ∗ ∝ ∆1/(2η+1)

α2/(2η+1)
= O(N−1/(4η+2)) (5)

for two-boson processes.
In addition to coherent tunneling, there exist incoher-

ent transitions, during which the system exchanges en-
ergy with the environment and thermalizes. We argued
above that in the case of the AQS algorithm, these pro-
cesses merely give rise to constant overhead. In fact, ther-
malization may even improve the performance if it occurs
sufficiently fast [14]. By letting the system thermalize,

FIG. 2. Dependence of the critical temperature T ∗ on the
search space size N . The critical temperature follows a power
law T ∗ = O(Nδ). Above T ∗, the system evolves incoherently,
while below, quantum coherence is retained. The qualitative
change at ηc is due to competition between single and two-
boson processes. For η < 1, the dynamics are incoherent even
at zero temperature in the limit of large N .

one can obtain the ground state with a probability of at
least 50% since only the lowest two energy states may
be significantly populated. In order to exclude the pos-
sibility of a quantum speedup in the incoherent regime,
it is therefore necessary to ensure that the thermaliza-
tion rate decreases with system size at least as fast as
O(N−1). Indeed, the thermalization rate always scales
as O(N−1) in the incoherent regime [28].

In the coherent regime, the thermalization rate can ex-
ceed this scaling near the avoided level crossing. This is
an intriguing result since it implies that quantum com-
putation can proceed through thermalization alone. This
may be accomplished, for instance, by initializing the sys-
tem in its ground at s = 0 (large bias) before rapidly
decreasing the bias to zero. The system is then left to
thermalize before being measured in the computational
basis. Repeating this procedure several times will yield
the ground state with high probability. We note, how-
ever, that this approach does not lead to an improved
scaling compared to adabatic evolution, which always of-
fers a quantum speedup in the coherent regime.

We summarize our results by discussing the combined
effect of single-boson and two-boson processes. In the
parameter regime considered, the two processes decou-
ple and their combined effect can be deduced from the
results presented above [28]. In particular, for the dy-
namics to be incoherent it is sufficient that one of the
processes renormalizes the tunneling rate to zero. We
thus conclude that the system is always incoherent at
finite temperature in the limit of large N and the al-
gorithm does not provide a quantum speedup. We ob-
serve that the critical temperature associated with the
coherent–incoherent transition scales differently for the
two processes, see Fig. 2. Only the smaller critical cou-
pling is physically significant; thus, two-boson processes
dominate for η > ηc, and single-boson processes other-
wise. At ηc = (3 +

√
17)/4 the critical temperatures
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scale identically and model-dependent pre-factors deter-
mine which process dominates.

Owing to the generic nature of the system–bath in-
teraction discussed here, we expect that our results ex-
tend to a wide range of adiabatic algorithms involving
avoided level crossings. The interaction Hamiltonian in
Eq. (2), involving only dephasing, arises naturally in such
situations because small gaps generically correspond to
macroscopically distinct states that are not connected by
a local environment. The non-local interactions in the
AQS algorithm lead to a spectrum in which the N − 2
states not involved in the level crossing are extensively
separated in energy (i.e., their excitation gap is propor-
tional to the full energy bandwidth of the system). A
more realistic model with few-body interactions will in-
stead have an intensive excitation gap. As long as the
temperature is much lower than this excitation gap, our
reduced model of the avoided crossing continues to ap-
ply, and so do our conclusions. Moreover, our findings
should be broadly revelant for adiabatic quantum algo-
rithms that involve many-body tunneling [31–33]. For
the AQS algorithm we were able to draw a direct corre-
spondence between tunneling and speedup, whereas the
general significance of tunneling in AQC algorithms is an
open question. Future work may explore the applicabil-
ity of our results to algorithms offering an exponential
speedup, where the role of many-body tunneling is par-
ticularly unclear [34]. Finally, our work highlights the
need for quantum error correction to render AQC scal-
able at finite temperature [35–42].
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