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We observe the dispersive breaking of cosine long waves [Phys. Rev. Lett. 15, 240 (1965)] in
shallow water, characterising the highly nonlinear “multi-soliton” fission over variable conditions.
We provide new insight into the interpretation of the results by analysing the data in terms of the
periodic inverse scattering transform for the Korteweg-de Vries equation. In a wide range of disper-
sion and nonlinearity, the data compare favourably with our analytical estimate, based on a rigorous
WKB approach, of the number of emerging solitons. We are also able to observe experimentally the
universal Fermi-Pasta-Ulam recurrence in the regime of moderately weak dispersion.

PACS numbers: 05.45.Yv,47.35.Fg,47.35.Bb,47.35.Jk

Introduction.— In a paper that gave birth to modern
soliton science [1], Zabusky and Kruskal (ZK) showed
that cosine waves propagating according to the weakly
dispersing Korteweg-de Vries (KdV) equation [2] undergo
a gradient catastrophe that generates “solitons”. Their
interaction leads to recursive behavior, thus confirming,
in the continuum limit, the phenomenon discovered by
Fermi-Pasta-Ulam (FPU) for oscillator chains [3].

Recently, problems involving the dispersive breaking
of waves have attracted renewed interest, thanks to ex-
periments in nonlinear optics, Bose Einstein condensa-
tion, electron beams, and spin waves, which reported the
catastrophe-induced generation of solitons [4–6], disper-
sive shock waves [7, 8], and different regimes of FPU re-
currence [9, 10]. Specific experiments for the periodic

case were reported just recently by exploiting a optical
harmonic (or modulated) wave ruled by the nonlinear
Schrödinger model [11]. Conversely, for the KdV equa-
tion, little progress has been made since the early exper-
iments on breaking of periodic waves in electrical trans-
mission lines, water and ion acoustic waves [12–15]. In
particular, in experiments on surface gravity waves, the
recurrence phenomenon predicted by ZK remained elu-
sive, and the observation of fission was limited to a few
solitons [13, 16, 17], which left open even basic questions
such as how many solitons can be expected to emerge
under variable experimental conditions. Furthermore,
a comprehensive interpretation of experimental data in
terms of inverse scattering transform (IST, also known
as nonlinear Fourier Transform) [16, 18, 19], and in par-
ticular the finite-gap theory valid for the periodic case
[20–22], is still lacking, also due to the intrinsic difficulty
to obtain analytical predictions.

In this Letter we present an extensive experimental in-
vestigation performed in a long tank, which provides both
evidence for recurrence and, at different water depths and
wave amplitudes, a quantitative validity test of the KdV
description of the multi-soliton fission. We also present a
theoretical description combining IST and the Wentzel-
Kramers-Brillouin (WKB) method which provides an an-
alytical characterization of the experiment in terms of a
formula that yields the number of soliton-like excitations
as a function of a single overall dimensionless parameter
quantifying the relative smallness of dispersive effects.

Experiment.— The experiment was performed in the
sea-keeping basin of the Technical University of Berlin,
which is 8 m ×110 m, with an effective measuring range
of 90 m. On one side, a computer assisted wave gener-
ator is installed, which, in the present experiment, was
utilized in piston-type mode. It provides a horizontal
particle velocity profile at the wave board close to the
physical one. The hydrodynamic transfer function of the
wave generator is modelled using the Biesel function [26]
relating the wave board stroke to the wave amplitude at
the position of the wave maker linearly. On the opposite
(downstream) side, a wave damping slope is installed to
limit wave reflections. The setup comprises eight equally
spaced wave gauges which are installed along the basin
at distances zj = 5+(j−1)10 m, j = 1, 2, . . . , 8, from the
wave maker located at z = 0. The computer controlled
wave maker produced, after a short ramp, a burst of eight
periods of a harmonic wave with adjustable elevation η0
and period T = 2π/ω. We measured the elevation of the
propagating wave train as time series η(t, zj) at gauge
locations zj. Consistently, the theoretical framework is
based on the following initial value problem, involving
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the KdV equation, written as a dimensional evolution
equation in space [25]

ηz +
1

c0
ηt − αηηt − βηttt = 0; η(t, 0) = η0 cos(ωt), (1)

where c0 =
√
gh is the linear (non dispersive) velocity in

shallow water of rest level h, α = 3
2

1
c0h

, and β = 1
6
h2

c3
0

.

The evolution dynamics is ruled by the interplay of two
characteristic length scales associated with the temporal
duration t0, namely the nonlinear length Lnl =

t0
αη0

and

the dispersion length Ld =
t3
0

β (see also [27]). Without

loss of generality, we set t0 = T
2π = 1

ω , which amounts
to choosing Lnl exactly equal to the breaking distance
Lb = 1/max

[

d
dtαη(t, 0)

]

= 1/(αωη0) after which the co-
sine wave would develop the gradient catastrophe in the
dispersionless limit β = 0. While Lnl determines the
physical length scale for the critical steepening and the
ensuing fission, the number of solitons that emerge from
the process is determined only by the value of the di-
mensionless parameter ε2 = 6Lnl/Ld = 2ω2h3/(3η0c

2
0),

which measures the smallness of dispersion, and is in-
versely proportional to the Ursell number [27, 28]. This
can be seen by casting Eqs. (1) in dimensionless units as

uζ − 6uuτ − ε2uτττ = 0; u0(τ) = cos (τ) (2)

where u(ζ, τ) = η/η0, τ = ω(t− z/c0) is the normalized
retarded time, ζ = z/(6Lnl), and ε is the only parameter
left. The value of ε is linked to that of the parameter δ
used by ZK as ε2 = 6π2δ2 [1].
In the experiment, we measured the evolution of the

waves at different depths h = 10, 15, 20, 26, 40 cm and
wave amplitudes η0, which we always kept below the
threshold ηth0 for the onset of turbulent breaking (note
that ηth0 decreases proportionally to h). Typical val-
ues of the parameters for four different runs at different
depths are reported in Table I. The regime of run A [30],
in which ε2 ≃ 0.07 is relatively large, essentially corre-
sponds to the regime of early experiments characterized
by very few emerging solitons (≤ 4 in [13]). However,
by decreasing the water depth h, one can obtain both
a shorter nonlinear length Lnl and a smaller dispersion

run A run B run C run D run E (recur.)
η0 [cm] 3.11 1.84 1.70 1.24 5.50
h [m] 0.4 0.2 0.15 0.1 0.4
T [s] 14.0 14.1 14.0 14.1 5.0
Ld [m] 3252 4713 5266 6651 147
Lnl [m] 37.95 22.86 15.90 11.99 7.64

ε2 0.0701 0.0290 0.0181 0.0107 0.3122

TABLE I. Experimental parameters for five representative
runs: water depth h, initial amplitude η0, period T , disper-
sion length Ld, nonlinear length Lnl, and dispersion smallness
ε2 [related to δ2 used by ZK as δ2 = ε2/(6π2)]. See Fig. 1 for
run B, Fig. 2 for runs C-D, Fig. 5 for run E.
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FIG. 1. Fission from three periods of a cosine wave with
η0 = 1.84 cm in h = 20 cm water (run B in Table 1). In order
to follow the evolution of the same initial period, different
time intervals are displayed. Open dots in (f,g) stand for
soliton amplitudes computed from IST analysis of data sets
(see text and Fig. 3(b)), recorded at 55,65 m.

parameter ε; this follows from the fact that Lnl ∼ h3/2,
Ld ∼ h−1/2, and hence ε2 ∼ h2. In particular, as shown
in Table 1, at h = 20 cm and η0 = 1.84 cm, run B cor-
responds to ε2 ≃ 0.029, which is almost identical to the
value δ = 0.022 considered by ZK [1]. The full measured
evolution of this case is displayed in Fig. 1. Steepening
occurs in time over the positive slope front of the cosine
until tiny ripples appear to regularize the strong gradient
observed at z3 = 25 m, which is close to the breaking dis-
tance z = Lnl ≃ 23 m for the dispersionless limit ε = 0.
Such oscillations expand and become deeper, forming un-
dular bores at z4,5 = 35, 45 m, until they eventually lead,
at z6,7 = 55, 65 m, to the formation of soliton-like ex-
citations on a finite negative background, whose peaks
scale approximately linearly. The peak amplitudes agree
well with the predictions based on the IST analysis of
data (see below) and reported as open dots in Fig. 1(f,g).
As shown by the data recorded at last gauge, the fis-
sion proceeds until up to eight soliton-like excitations on
the same background appear at z8 = 75 m, as shown in
Fig. 1(h). Note that, at this stage, the regularity of the
periods becomes affected by the residual reflection of the
forefront periods arrived at the tank end.
When we further decrease the water depth to h = 15

cm (run C in Table 1) and h = 10 cm (run D in Table
1), the steepening is found to occur on a shorter length
scale according to the reduced values of Lnl (see Table
1). In fact, as shown in Fig. 2(a,d), well developed os-
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FIG. 2. Wave profiles: (a-c) run C, h = 15 cm, ε2 = 0.0181;
(d-f) run D, h = 10 cm, ε2 = 0.0107.

cillations already appear at z3 = 25 m. In this case, the
fission gives rise to a maximum of 10 (at distance z7 = 65
m) and 12 (at z6 = 55 m) distinguishable solitons in the
case of run C and run D, respectively. However, as ε2

decreases and the number of solitons increases, counting
them by visual inspection of the time series becomes in-
appropriate for two basic reasons: (i) fission of solitons
can proceed until the wave train exceeds one period of
the cosine wave, a condition where shallow solitons can
be easily hidden by the tall ones in the adjacent period;
(ii) the waves produced through the dispersive breaking
are not, strictly speaking, soliton solutions, but rather
finite-gap solutions, and not all the bands correspond to
visible excitations with soliton-like features. Therefore a
criterion is needed to define the latter.
IST data analysis.— Both of the issues mentioned

above can be successfully addressed by analyzing the ex-
perimental data in terms of the IST for periodic poten-
tials (p-IST) [16, 18, 19]. Explicitly, the nonlinear wave
components contained in the input monochromatic wave
u0(τ) = cos(τ) can be computed via the direct scatter-
ing eigenvalue problem associated to Eq. (2), namely the
time-independent Schrödinger equation

ε2φττ + (λ+ u)φ = 0 , (3)

λ being the spectral parameter. When u = u0(τ), Eq. (3)
is the Mathieu equation. Floquet (Bloch) theory implies
that the spectrum of Eq. (3) decomposes into alternat-
ing bands and gaps, with the former corresponding to the
waves that are embedded in the initial condition and pro-
gressively emerge from the fission. Of particular impor-
tance here is the main spectrum, which is invariant upon
evolution, and is constituted by the band edges λ2n−1

and λ2n, n = 1, . . .N , where N is the number of gaps.
Such values are defined by the conditions T (λ2n−1) = 1
and T (λ2n) = −1 for n odd (1 ↔ −1 for n even), where
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FIG. 3. (a) Half-trace of monodromy matrix T (λ) vs. spec-
tral parameter λ at ε2 = 0.029 (ZK regime), comparing the
ideal monochromatic case u0 = cos(τ ), with normalized ex-
perimental data, run B, z6 = 55 m [Fig. 1(f)]. λ1,...21 are
the band edges; Ns = 8 solitons correspond to the first eight
bands on the left of λS (see text for its definition). This sets
λref to λ17 (2Ns +1 = 17). (b) Real-world soliton amplitudes
2η0[λ17(zj)− λ2n(zj)], n = 1, . . . , 8, obtained from the p-IST
analysis, as reported in (a), of recorded elevation η(t, zj) at
gauge distances zj (data at z = 0, obtained from u0 = cos(τ ),
are reported for reference).

T (λ) = 1
2 Trace(M) and M is the monodromy matrix

associated with Eq. (3) [16, 18, 19]. The correspond-
ing spectral bands are [λ2n−1, λ2n], n = 1, . . . , N , plus
[λ2N+1,∞), for which |T (λ)| ≤ 1. Solitons are obtained
in the limit where the band widths shrink to zero, i.e.
the band edges coincide, λ2n−1 = λ2n. This condition is
never strictly satisfied in the periodic case. Nevertheless,
one can say that the n-th band yields an effective soliton
if the relative bandwidth Wn = wn/(wn + gn) is suffi-
ciently small, wn = λ2n − λ2n−1 and gn = λ2n+1 − λ2n

being respectively the band width and the adjacent gap
width. A suitable choice is Wn ≤ κ, with κ = 0.01
[32]. Under these conditions the soliton amplitudes can
be calculated as An = 2(λref − λ2n), n = 1, . . . , Ns,
where λref = λ2Ns+1 stands for the reference level [30],
and Ns < N is the number of solitons (bands fulfilling
Wn ≤ κ) [21, 29].

To determine the number of solitons Ns in the experi-
ment, we compared the p-IST spectrum for a cosine wave
u0(τ) = cos τ with the spectrum of the measured data.
That is, for the latter we replaced u in Eq. (3) with the
normalised recorded data uj(τ) = η(ωt, zj)/η0, which
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amounts to measuring the amplitude in units of η0 and to
normalising the period to 2π. The results of such analysis
are shown in Fig. 3 for run B, corresponding to the ZK
regime. In particular, Fig. 3(a) compares the half-trace
T (λ) for the pure cosine input and the data measured
at distance z6 = 55 m, displaying very good agreement
between the two. Of the ten total bands, only the first
eight fulfil the criterium Wn ≤ κ (those on the left of
the threshold λs), giving rise to 8 soliton-like excitations
in agreement with the visual count from Fig. 1. We re-
peated this analysis at distances zj, j = 1, . . . , 7 (gauge
8 was excluded due to the presence of reflection). The
dimensional soliton amplitudes η0An = 2η0(λref − λ2n),
obtained from the calculated band edges at z = zj, are
plotted in Fig. 3(b) as a function of distance, which shows
a good degree of constancy, confirming the spectrum in-
variance upon evolution.
We performed the above analysis for all recorded data

sets, obtaining Ns as a function of ε. The p-IST results
were obtained by numerically integrating Eq. (3), as in
[21, 29]. In the case of the pure cosine input, however,
we can also obtain all spectral information analytically
by employing the WKB expansion φ(x) = A(x) eiS(x)/ε

in Mathieu equation. Leaving all the mathematical de-
tails to a separate publication for brevity [34], this ap-
proach allows us to obtain analytical expressions for the
monodromy matrix M and the relative bandwidths Wn,
from which we estimate Ns as

Ns =
⌊ 2S1(λs)

πε
+

1

2

⌋

, (4)

⌊·⌋ being the floor function, S1(λ) = 2
√
1 + λE(ϕ, k)

and E(·) the incomplete elliptical integral of second kind
with argument ϕ = [π − cos−1(λ)]/2 and modulus k =
√

2/(1 + λ). The value λs, which as before is the thresh-
old at which Wn = κ [cf. Fig. 3(a)], can now be obtained
as S2(λs) = ε ln(2/πκ), with S2(λ) = 4

√
1− λE(ϕ, k)

with ϕ = cos−1(λ)/2 and k =
√

2/(1− λ). The compar-
ison between the estimate in Eq. (4) and the number of
solitons obtained from all available data sets (by apply-
ing the p-IST numerical analysis illustrated in Fig. 3) is
displayed in Fig. 4, which shows a very good agreement
even at relatively large values of ε, where the WKB is ex-
pected to be less accurate. Some discrepancy is observed
in the most nonlinear runs at h = 10 cm, where, however,
the effect of losses and the non-uniformity of the bottom
become non-negligible. We also remark that a suitable
expansion of Eq. (4) [35] shows that Ns scales at lead-
ing order as 1/ε ∼ √

η0/ωh, in agreement with heuristic
estimates given in the past [15, 33]. Similar expansions
also yield explicit estimates for the soliton amplitudes,
which confirm the nearly linear variation of soliton peaks
as observed in Figs. 1 and 2 and pointed out by ZK [1].
Recurrence.— In the ZK regime (run B), recurrence is

expected at z ≃ 690m (ζ ≃ 5.067), clearly beyond most
tank facilities. However, recurrence can be experimen-
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FIG. 5. Recurrence observed for run E, h = 40cm: (a) Fourier
mode evolution from data measured at the eight gauge lo-
cations zj ; (b-d) Wave profiles at z2 = 15 m, z7 = 65 m
(recurrence), z8 = 75 m (new cycle of fission).

tally observed with shorter Lnl but larger ratio Lnl/Ld,
as obtained, e.g. in run E in Table 1. In this case, fis-
sion gives rise to three clearly visible nonlinear waves, as
shown in Fig. 5. The recurrence is clearly recognized from
the evolution of the amplitudes of the first three Fourier
modes (see Fig. 5(a)), obtained from the recorded data
[3]. Similarly to what happens in FPU (compare with
Fig. 1 in [3]), the second mode attains maximum en-
ergy when the fundamental one is most depleted, then
the process is reversed until the fundamental mode takes
back his energy z7 = 65 m. Meanwhile the third mode
is characterised by a double cycle of amplification and
deamplification. At 65 m we observe a good recurrence
of the initial condition, followed by a new cycle of fission
starting at 75 m.

Conclusions.— We presented extended observations
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of multi-soliton fission and recurrence in surface gravity
waves which show good agreement with novel analytical
predictions on the number of emerging solitons, based on
a WKB reduction of the scattering problem associated
with the KdV equation. These results will be crucial
to understand more complex phenomena such as wave
runup [36] and coastal evolution of tsunamis [37], and,
given the universality of the dispersive breaking of waves,
constitute a viable general approach to understand exper-
iments ruled by other integrable models.
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[26] F. Biésel and F. Suquet, Les apparails générateurs de
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