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We present a first-principle study of anomaly induced transport phenomena by performing real-
time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian SU(Nc) and
Abelian U(1) gauge fields. Investigating the behavior of vector and axial currents during a sphaleron
transition in the presence of an external magnetic field, we demonstrate how the interplay of the
Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating
wave. We further analyze the dependence of the magnitude of the induced vector current and the
propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark
mass.

Novel transport phenomena associated with the pres-
ence of chiral fermions have generated enormous excite-
ment across the physics community. Soon after it was
realized that local imbalances of the axial charge j0a can
lead to a series of new transport phenomena [1, 2], oth-
erwise forbidden by discrete symmetries, a comprehen-
sive search of possible manifestations has started to take
place across the most diverse range of energy scales, rang-
ing from heavy-ion collisions in high-energy QCD [3, 4]
to condensed matter experiments with Dirac and Weyl
semi-metals [5]. The most prominent example of such
anomalous transport phenomena is the Chiral Magnetic
effect (CME) [2], whereby an external magnetic field ~B
can induce an electro-magnetic (vector) current along its

direction, ~jv ∝ j0a ~B. However, there are in fact a variety
of transport phenomena that occur due to non-trivial in-
terplay of axial and vector charges and we refer to [6] for
a comprehensive review.

While in Abelian gauge theories such as QED, the only
source of an axial charge imbalance is due to parallely ori-
ented electric and magnetic fields, in non-Abelian gauge
theories like QCD there is an additional possibility to
generate a local imbalance of axial charges via topologi-
cal transitions [2]. In the presence of a sufficiently strong
magnetic field, the CME and its associated phenomena
can therefore act as a unique messenger of the real-time
dynamics of topological transitions in QCD.

It was proposed early on [3, 4] that aforementioned
effects could be observed in heavy-ion collision exper-
iments at the Relativistic Heavy Ion Collider (RHIC),
where strong transient magnetic fields are generated at
early times due to the charged nuclei moving almost at
the speed of light. Experimentally intriguing hints of
the CME have been observed [7–9], however the situa-
tion remains controversial as the measurements are also
subject to large background uncertainties [10]. More-
over, since the lifetime of the magnetic field is expected
to be short < 1 fm/c [11, 12], the theoretical description
of these effects is also challenging as it requires a first-
principle description of far-from-equilibrium dynamics at
very early-times [13].

So far the dynamics of the CME has been studied
primarily in near-equilibrium situations both microscopi-
cally using perturbation theory [2], euclidean lattice tech-
niques [14] or holography [15–17] as well as macroscopi-
cally using anomalous extensions of relativistic hydrody-
namics [18–21]. Chiral kinetic theory [22–25] is another
theoretical approach which has been developed recently
and in principle extends beyond near-equilibrium situa-
tions, but its study has been limited to Abelian gauge
theories so far. In this letter we establish a new first-
principles technique based on real-time lattice gauge the-
ory simulations with dynamical fermions. Our approach
is specifically devised to study anomalous transport phe-
nomena in far-from-equilibrium situations, encountered
e.g. during the early stages of high-energy heavy-ion col-
lisions.

Classical-statistical lattice gauge theory simulations
have been an essential tool to study the non-perturbative
early-time dynamics immediately after the collision of
heavy nuclei [26–29]. While significant progress has been
made in understanding the dynamics of gauge fields, in-
cluding for the first time the dynamics of topological
transitions at early times [13], the non-equilibrium dy-
namics of fermions [30, 31] is only starting to be explored
with first attempts made to elucidate on the fermion pro-
duction mechanism in non-Abelian [32–35] and Abelian
gauge theories [36–38]. However, to explore the real-time
dynamics of anomaly induced charge transport, it is es-
sential to include dynamical light quarks, coupled simul-
taneously to the non-Abelian (QCD) and Abelian (QED)
gauge fields, into the non-equilibrium description. In this
letter we report the first real-time lattice study of this na-
ture, exploring the dynamics of quarks during and after a
sphaleron transition in the presence of an external mag-
netic field. We focus on the evolution of vector and axial
currents and for simplicity treat both the non-Abelian
and Abelian gauge fields as classical backgrounds ignor-
ing the back-reaction of fermions.

Our real-time lattice simulations are explained in more
detail in the next section, where we also introduce the rel-
evant observables. Subsequently, we present simulation
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results for the dynamical evolution of axial and vector
currents, and analyze the effects of explicit chiral sym-
metry breaking due to the quark mass. We conclude with
a brief summary of our findings and perspectives for fu-
ture applications of this framework.

Simulation technique We employ the Hamiltonian
lattice formalism and discretize the theory on a spatial
lattice of dimensions Nx×Ny×Nz and spacing as, where
the non-Abelian SU(Nc) and Abelian U(1) fields in tem-
poral (A0 = 0) gauge are represented in terms of the
lattice link variables Ux,j ∈ SU(Nc)×U(1) with x label-
ing the lattice site and j = 1, 2, 3 the Lorentz index. We
discretize the fermions using a tree-level O(an) improved
version of the Wilson Hamiltonian

Ĥ = a3s
∑
x

ψ̂†xγ
0(−i /Ds

W +m)ψ̂x , (1)

where

/D
s
W ψ̂x =

1

2as

∑
n,j

Cn

[(
γj − inrw

)
Ux,njψ̂x+nj

+2inrwψ̂x −
(
γj + inrw

)
Ux,−njψ̂x−nj

]
, (2)

with the coefficients Cn fixed in order to explicitly can-
cel the O(an) terms. While we found the next-to-leading
order improvement with C1 = 4/3, C2 = −1/6 to be im-
portant, higher order improvement was also checked and
found not to provide a significant advantage [39]. Evo-
lution equations for the fermion operators, are derived
from the lattice Hamiltonian and take the usual form

iγ0∂tψ̂ = (−i /Ds
W +m)ψ̂ . (3)

which we solve numerically using a modefunction expan-
sion [30]. Since for a classical gauge field configuration

Eq. (3) is linear in the fermion operator ψ̂, one can ex-

pand its solution in the basis of creation (b̂λ(0)) and anni-

hilation operators (d̂†λ(0)) of fermions and anti-fermions
at initial time, t = 0,

ψ̂x(t) =
1√
V

∑
λ

(
b̂λ(0)φuλ(t, x) + d̂†λ(0)φvλ(t, x)

)
, (4)

where λ labels the eigenmodes of the Hamiltonian. By
construction the time dependence is then entirely re-

flected by the wave-functions φ
u/v
λ (t, x), which we calcu-

late by diagonalizing the Hamiltonian at initial time and
subsequently solving the Dirac equation for each mode-
function using a leap-frog scheme with a time step at =
0.02as. When computing physical observables, operator
expectation values are evaluated according to the density
matrix of the initial state; here we simply consider an
initial vacuum for which < [b†λ, bλ′ ] >= 2(nuλ − 1/2)δλ,λ′

and < [dλ, d
†
λ′ ] >= −2(nvλ − 1/2)δλ,λ′ with n

u/v
λ = 0

give the only non-vanishing contributions to fermion bi-
linears [37].

Gauge links: Since the computational cost of this
calculation is significant, we consider for simplicity a
sphaleron transition in two-color QCD, noting however
that the extension to SU(3) is straightforward and will
not change the essential features of the problem. Specifi-
cally, we construct a topologically non-trivial map G :
T 3
lattice → S3

SU(2), which extends over a characteris-
tic scale rsph and has winding equal to unity. Our
SU(2) gauge links are then constructed [39] by connect-

ing the topologically distinct vacua U
SU(2)
x,i (t = 0) = 1

and U
SU(2)
x,i (t ≥ tsph) = GxG

†
x+i along a trajectory

with constant electric field E
SU(2)
x,i over the time scale

t ∈ [0, tsph]. Concerning the U(1) gauge links, we employ
a constant magnetic field pointing in the z direction, i.e.
~B = Bẑ, which is implemented on the lattice following
Ref. [40, 41]. Back coupling of fermions to the evolution
of the gauge fields is not considered in this work.

Observables: Vector and axial densities are defined in
analogy to the continuum as j0v(x) = 〈ψ̂†xψ̂x〉 and j0a(x) =

〈ψ̂†xγ5ψ̂x〉, whereas the spatial components of the currents
take the form,

jiv(x) =

n−1∑
n,k=0

Cn
2

〈
ψ̂†x−kiγ

0
(
γi − inrw

)
Ux−ki,ni ψ̂x+(n−k)i

+ ψ̂†x+(n−k)iγ
0
(
γi + inrw

)
Ux+(n−k)i,−ni ψx−ki

〉
;

jia(x) =

n−1∑
n,k=0

Cn
2

〈
ψ̂†x−kiγ

0γiγ5 Ux−ki,ni ψ̂x+(n−k)i

+ ψ̂†x+(n−k)iγ
0γiγ5 Ux+(n−k)i,−ni ψx−ki

〉
. (5)

Since the currents are derived from the improved Hamil-
tonian, by variation with respect to the (Abelian) gauge
fields, these are by construction improved to the same
order, which is crucial for reducing discretization effects
in our real-time simulations.

While the vector current is covariantly conserved
∂µj

µ
v = 0 as in the continuum, the lattice definition

of the axial current for Wilson fermions satisfies the
anomaly equation ∂µj

µ
a (x) = 2mηa(x)+rw〈W (x)〉 where

ηa(x) ≡ 〈ψ̂†xiγ0γ5ψx〉 denotes the pseudo-scalar den-
sity and rw〈W (x)〉 is the contribution of the Wilson
term to the anomaly equation. Since the Wilson term
has a non-trivial continuum limit [35, 42] rw〈W (x)〉 →
− g2

8π2 TrFµν(x)F̃µν(x), the usual expression

∂µj
µ
a (x) = 2mηa(x)− g2

8π2
TrFµν(x)F̃µν(x) (6)

is recovered in the continuum and we have carefully mon-
itored the residual cutoff effects in our simulations [39].

Since the spatial size of the sphaleron rsph, is the only
relevant scale in our simulations we will express all phys-
ical quantities in units of rsph. As sphalerons are non-
perturbative infrared objects with a characteristic size of
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FIG. 1. Illustration of real-time dynamics of the chiral magnetic wave for light quarks (mrsph � 1 ). Contour lines represent
the distribution of axial and vector charges at times t/tsph = 0.6, 0.9, 1.1, 1.3, 1.6, 1.9 of the evolution. Simulations were
performed on a 24 × 24 × 64 lattice.

the magnetic screening length (see e.g. [13, 43, 44]) a con-
version to physical units can be achieved by assigning a
value of about 200−500 MeV to r−1sph. If not stated other-
wise we use a lattice spacing of rsph/a = 6, the duration
of the sphaleron transition is chosen as tsph = 3/2rsph
(corresponding to ∼ 0.6 − 1.5 fm/c) and the magnetic
field strengths considered in this work is qB = 3.5r−2sph

(corresponding to a few m2
π).

Non-equilibrium dynamics of axial and vector
charges We will now analyze the dynamics of the axial
and vector charges during and after a sphaleron transi-
tion, and first focus on the anomalous transport of light
quarks with mrsph � 1, where dissipative effects due to a
finite quark mass can be neglected over the time scale of
a sphaleron transition. Our results for the time evolution
of the axial and vector densities j0v/a(t, x) in the presence
of an external magnetic field are compactly summarized
in Fig. 1 where we show contour lines of the distributions
at various stages of the time evolution.

We observe that during the sphaleron transition, a lo-
cal imbalance of axial charge j0a is generated according to
the axial anomaly; at the same time the chiral magnetic
effect induces a vector current jzv with a similar profile
in coordinate space. Conservation of the vector current
∂µj

µ
v = 0, implies that longitudinal gradients of the cur-

rent ∂zj
z
v , lead to separation of electric charges along

the direction of ~B; over time electric charge accumulates
at the edges of the sphaleron, resulting in a dipole like
structure of the vector charge density j0v observed e.g. at
t/tsph = 0.6, 0.9 in Fig. 1.

Since the local imbalance of vector charge j0v in turn

induces an axial current ~ja ∝ j0v
~B due to the chiral sep-

aration effect (CSE) [45], the combination of CME and
CSE ultimately leads to the formation of a chiral mag-
netic wave [18, 46]. We observe from Fig. 1, that the

chiral magnetic wave manifests itself as the propagation
of a soliton-like wave-packet associated with the non-
dissipative transport of axial and vector charges along
the direction of magnetic field. We note that this is the
first time that the emergence of such a collective exci-
tation is confirmed in non-perturbative real-time lattice
gauge theory simulations.
Chiral magnetic wave: The dynamics of the chiral

magnetic wave can be further investigated by integrating
out the transverse coordinates to study the propagation
of the wave-packet along the longitudinal direction. This
allows us to compare the results of our microscopic simu-
lations with a macroscopic description within the frame-
work of anomalous hydrodynamics in a straightforward
way. In anomalous hydrodynamics [18–21], the coupled
dynamics of axial and vector charges is described in terms
of conservation laws and the constitutive relations of the
currents, which to leading order in gradients and in pres-
ence of an external magnetic field Bµ = (0, 0, 0, B) take
the form [19]

jµv,a = nv,au
µ +Dv,aO

µnv,a + σBv,aB
µ . (7)

Specifically, for a system of non-interacting fermions, the
diffusion constant Dv,a, vanishes and the anomalous con-
ductivities are simply given by σBv,a = na,v/B when the

magnetic field strength is sufficiently large B � r−2sph,m
2

[2]. In the local rest-frame uµ = (1, 0, 0, 0), the anoma-
lous hydrodynamic equations of motion for the integrated
quantities j0,zv,a(t, z) =

∫
d2x⊥ j0,zv,a(t, x⊥, z) then take the

form,

∂t

(
j0v(t, z)
j0a(t, z)

)
= −∂z

(
j0a(t, z)
j0v(t, z)

)
+

(
0

S(t, z)

)
(8)

with the sphaleron induced source term given as S(t, z) =

− g2

8π2

∫
d2x⊥Tr Fµν F̃µν . The solutions for the vector and
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FIG. 2. Longitudinal profiles of the axial and vector den-
sities and currents measured in units of r−1

sph at different
times of the evolution. Solid curves correspond to times
t/tsph = 0.67 , 1.67, 2.67 (inside-out); dashed lines correspond
to intermediate time steps.

axial currents can be then constructed easily,

j0v,a(t > tsph, z) = (9)

1

2

∫ tsph

0

dt′
[
S
(
t′, z − c(t− t′)

)
∓ S

(
t′, z + c(t− t′)

)]
which correspond to wave-packets moving along ±z di-
rections at the speed of light, c.

Our lattice results for the dynamics of (transversely)
integrated currents j0,zv,a(t, z) are presented in Fig. 2,
showing the longitudinal profiles at different times of
the evolution. One clearly observes that subsequent to
a sphaleron transition, the axial charge is transported
away from the center of the sphaleron generating a pos-
itive (negative) vector charge propagating along the ±z
directions respectively. We find that once an axial charge
imbalance is generated from the microscopic QCD dy-
namics, qualitative features of the transport of vector and
axial charges such as the overall magnitude and symme-
try properties of currents as well as the wave velocity are
indeed well described by our simple analysis in anoma-
lous hydrodynamics. However, our microscopic descrip-
tion also reveals minor deviations, e.g., a smaller fraction
of the axial charge remains localized at the center of the
sphaleron throughout the evolution.

Quark mass dependence: So far we have investigated
the real-time dynamics of anomaly induced transport for
light quarks (mrsph � 1). We will now vary the quark
mass to study the effects of explicit non-conservation
of axial charge. In Fig. 3 we show the time evolu-
tion of the net axial charge J0

a(t) =
∫
d3x j0a(t, x), the

pseudo-scalar condensate Ha(t) =
∫ t
0
dt′
∫
d3x ηa(t′, x)

and the net vector current Jzv (t) in the presence of a
magnetic field qB = 3.5r−2sph for different values of the

quark mass mrsph = 3 · 10−3, 0.25, 0.5, 0.75, 1. Despite
the fact that our lattice simulations accurately repro-
duce the anomaly relation Eq. (6) in all cases, clear dif-
ferences emerge for the different scenarios. With light
fermions the evolution of the net axial charge J0

a closely
follows that of the Chern-Simons number ∆NCS(t) =
g2

16π2

∫ t
0
dt′
∫
d3x Tr Fµν F̃µν and the sphaleron transition

induces two units of net axial charge. In contrast, for
heavier fermions a significant fraction of the anomaly
budget is absorbed by the growth of the pseudo-scalar
condensate Ha(t), which in turn results in a reduction
of the axial charge imbalance J0

a with increasing quark
mass. Even for an intermediate quark mass mrsph = 1/2,
which is of the order of strange quark mass, the maximal
imbalance of axial charges is reduced by a factor of two.

Similar to the axial charge imbalance, we find that the
behavior of the induced vector current Jzv also exhibits
significant changes with increasing quark mass. While for
relatively light quarks (mrsph . 1/4), the overall magni-
tude of the vector current simply reduces, the changes for
the heaviest quark mass mrsph = 1 are more dramatic as
the current Jzv even reverses its direction immediately
after the sphaleron transition. Beyond the time scales
shown in Fig. 3, we find that for heavier masses both the
net axial charge J0

a(t) and vector current Jzv (t) oscillate
in time and we expect that they will eventually decay
due to chirality changing interactions [47, 48]. While at
present finite volume effects in our simulations for heavier
quarks prohibit us to quantitatively access the dynamics
at later times, we intend to return to this issue in a future
publication [39, 49].

Conclusions & Outlook. We established a new the-
oretical method to explore some of the fascinating phe-
nomena of anomaly induced transport under far from
equilibrium conditions. As a first application, we demon-
strated how real-time fermion production in the pres-
ence of a QCD sphaleron transition leads to a net chi-
rality imbalance. We showed how, in the presence of
a magnetic field, the chiral magnetic and chiral separa-
tion effects lead to the formation of a chiral magnetic
wave, separating electric charges along the direction of
the magnetic field. Many aspects of anomalous transport
predicted earlier in near-equilibrium situations are beau-
tifully captured within our framework, which allows for
the first time to study the complex real-time dynamics of
these effects from first principles in the underlying quan-



5

 0

 0.5

 1

 1.5

 2

 0  0.5  1
t/tsph

J0
a

 0  0.5  1
t/tsph

-Ηa

 0  0.5  1
t/tsph

Jz
v

mrsph « 1
mrsph = 0.25
mrsph = 0.5
mrsph = 0.75
mrsph = 1

FIG. 3. Evolution of the axial charge J0
a (left), pseudo-

scalar condensate Ha (center) and vector current Jz
v (right)

for different values of the fermion mass mrsph = 3 ·
10−3, 0.25, 0.5, 0.75, 1.0. Comparison with the gray lines in
the left panel demonstrates that the axial anomaly relation
(6) is satisfied in all cases.

tum field theory. We showed that, for sufficiently strong
magnetic fields, the transport of the currents could be
qualitatively described within the framework of anoma-
lous hydrodynamics and demonstrated that for heavier
fermions explicit chiral symmetry breaking due to finite
quark masses leads to a significant reduction of the axial
charge production and the anomalous vector currents.

Our simulations provide a first step towards a realistic
description of the dynamics of the chiral magnetic ef-
fect and related phenomena in relativistic heavy-ion col-
lisions. Since the lifetime of the magnetic field is short,
and the rate of topological transitions is largest at early
times [13], a significant part of the effect is expected to
occur during the first fm/c where a microscopic field the-
oretical description is inevitable. Of course, to obtain
quantitative estimates of the chirality imbalance and vec-
tor currents at early-times, it will be important to in-
clude fermionic back-reaction and extend our study to
more realistic ensembles of non-equilibrium gauge fields
and work is in progress along these directions [39]. Ul-
timately, our work could be extended towards providing
the initial conditions for the anomalous hydrodynamic
evolution all the way till hadronization, to understand
manifestations of the CME in hadronic observables.

Since our real-time lattice simulations allow to study
the complex 3+1D space-time dynamics of anomalous
transport phenomena in a variety of quantum field theo-
ries, we anticipate many further interesting applications
beyond high-energy QCD. As an example, this method
can be easily extended to study anomalous transport
properties in strongly correlated electron systems, chiral
plasma instabilities [50–52] or fundamental matter pro-
duced in collisions of ultra-strong laser pulses [38].
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