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We construct ensembles of random scalar potentials for Nf interacting scalar fields using non-
equilibrium random matrix theory, and use these to study the generation of observables during
small-field inflation. For Nf = O(few), these heavily featured scalar potentials give rise to power
spectra that are highly non-linear, at odds with observations. For Nf � 1, the superhorizon
evolution of the perturbations is generically substantial, yet the power spectra simplify considerably
and become more predictive, with most realisations being well approximated by a linear power
spectrum. This provides proof of principle that complex inflationary physics can give rise to simple
emergent power spectra. We explain how these results can be understood in terms of large Nf

universality of random matrix theory.

According to the cosmological paradigm of inflation [1–
3], the structure of the observed universe emerged from
the gravitational collapse of small, primordial density
perturbations, which in turn originated as quantum fluc-
tuations during a period of accelerated expansion. The
cosmological parameters inferred from observations of the
Cosmic Microwave Background radiation (CMB) are in
striking agreement with the predictions of many of the
simplest models of single-field slow-roll inflation [4]: at
the present accuracy of cosmological surveys, the spec-
trum of adiabatic curvature perturbations is Gaussian
and almost scale-invariant and can thus be described with
just two numbers — the amplitude of the power spectrum
As and its tilt ns. Should then the simplicity of the ob-
served CMB perturbations be interpreted as evidence for
a minimal and simple microscopic origin of inflation in
fundamental theory?

Attempts at embedding inflation in string theory have
revealed that even ostensibly simple inflationary models
require delicate arrangements of the various sources of
the scalar potential, which in general is a complicated
function of a large number of scalar ‘moduli’ fields [5].
More general inflationary models may involve many dy-
namically important fields with complicated interactions,
however the explicit construction of such models is very
challenging, and not much is known about the observa-
tional predictions of complex many-field models of infla-
tion.

In this paper we address this question, and provide
proof of principle that a complex many-field inflation-
ary model can give rise to simple power spectra. By
computing the power spectra of inflationary models with
highly featured, randomly generated scalar potentials of
between 2 and 50 scalar fields, we find that systems with
a large number of fields generate simpler and far less

∗ mafalda.dias@desy.de
† jonathan.frazer@desy.de
‡ m.c.d.marsh@damtp.cam.ac.uk

featured power spectra during inflation. We interpret
this result using Random Matrix Theory (RMT), finding
that in systems with many fields, eigenvalue repulsion
makes the power spectra both more predictive and better
approximated by a linear power-law. RMT universality
then suggests that these results should be applicable well
beyond the class of random inflationary models that we
study explicitly [6].

THE MODEL

To study the impact of complexity on observables, we
construct ensembles of randomly generated scalar po-
tentials suitable for inflation using the method pre-
sented in [7]. By constructing each scalar potential lo-
cally around the field trajectory, the computational cost
(which for complicated, globally constructed potentials
quickly becomes prohibitive [8, 9]) is minimised, thus
enabling us to study inflation in potentials with struc-
ture on scales � MPl for a large number of fields. We
will consider statistically isotropic systems, and stipulate
that the collection of Hessian matrices associated with
a set of well-separated points in field space constitute
a random sample of the Gaussian Orthogonal Ensemble
(GOE). According to [7] (see also [10]), such potentials
can be constructed using the non-equilibrium RMT tech-
nique of Dyson Brownian Motion (DBM) [11].

More precisely, for a field located at a point p0 in field
space, we write the potential locally as a Taylor expan-
sion to quadratic order by specifying the value of the
potential V |p0 , its gradient ∂aV |p0 , and the Hessian ma-
trix ∂2

abV |p0 . We choose these initial conditions to be
favourable for inflation, in particular, we focus on the
rare regions in which the potential is locally very flat,
and we set the initial field space velocity φ̇a|p0 to be suit-
able for slow-roll inflation. Thus, close to p0 the potential
is well-approximated by,

V
∣∣∣
p0

= Λ4
v

√
Nf

(
v0|p0 + va|p0 φ̃a +

1

2
vab|p0 φ̃aφ̃b

)
, (1)
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where Λv defines the ‘vertical’ scale of the potential, and
φ̃a ≡ φa/Λh are dimensionless fields with Λh setting the
scale over which the potential exhibits structure. The
overall factor of

√
Nf is explained in [7].

We then numerically solve the dynamical equations of
motion of this system over a path length δs � Λh to
the point p1, at which point we update the coefficients
of the Taylor expansion to find the new local description
of the potential. To linear order in Taylor expansion
we then find the scalar potential and gradient at p1 to
be given by v0|p1 = v0|p0 + va|p0δsa/Λh, and va|p1 =
va|p0 + vab|p0δsb/Λh, while,

vab|p1 = vab|p0 + δvab|p0→p1 , (2)

where δvab is a small, stochastic matrix perturbation ob-
tained by ‘Dyson Brownian motion’ [11]. The first two
moments of δvab are given by,

〈δvab|p0→p1〉 = −vab|p0
δs

Λh
, (3)

〈(δvab|p0→p1)2〉 = (1 + δab)
δs

Λh
σ2 , (4)

where δs =
√
δsaδsa and σ2 sets the variance of the

distribution (we take σ2 = 2/Nf so that for Nf � 1,
the spectrum of vab is Nf independent). Having found
the values of the scalar potential, gradient, Hessian and
field space velocity at p1, we may re-iterate the proce-
dure and evolve the system to another nearby point p2.
This way we stitch together the random scalar potential
patch by patch along the dynamically determined field
trajectory. As the field evolves to a distance s away
from the initial point p0, due to eigenvalue repulsion
(cf. Fig. 3 of [7]) the Hessian matrix relaxes from a rare
fluctuated spectrum, suitable for inflation, towards the
Wigner distribution which is the typical spectrum of the
GOE [11, 12]. We terminate the iterative process once
inflation ends, defined to be when the slow-roll parame-
ter ε ≡ −Ḣ/H2 = 1. This construction is applicable to
both small-field s < MPl and large-field s > MPl infla-
tion but in this paper we will only study the s < MPl

regime. The construction does not require an underlying
shift symmetry and hence the method seems particularly
well suited to the study of small-field inflation.

METHOD

Computing Pζ(k) — Computing perturbations for
large Nf models is in general a numerically heavy task,
as it involves an integration from deep inside the horizon
up until the end of inflation. The main computational
expense comes from the fact that in order to obtain the
two-point function of the curvature perturbation, ζ, one
is required to solve O(N2

f ) coupled ordinary differential

equations [13]. Furthermore, this system of equations has
an explicit k-dependence, meaning that the full power
spectrum of ζ, Pζ(k), can only be obtained by calculat-
ing the amplitude for each mode individually.

Here, we use the patchwork construction of the DBM
potential to find striking simplifications for slow-roll mul-
tifield inflation, enabling us to bypass these problems.
The key step is to rotate the field basis independently
for each patch to the local eigenmodes, ϕa, of the Hes-
sian. The great advantage in doing so is that the po-
tential in each patch is then (locally) sum-separable

V (ϕ1, . . . , ϕNf ) =
∑Nf
a Va(ϕa). In this case, the field

perturbations in a spatially flat gauge evolve like,

δϕa
∣∣
pi+1

= Γab(pi+1, pi)δϕ
b|pi , (5)

where, assuming the slow-roll equations of motion are
valid, the propagator Γab(pi+1, pi) can be expressed
purely in terms of background quantities [14], thus pro-
viding an analytic solution to the propagation of the per-
turbation over each patch.

The full evolution of the field perturbations until the
end of inflation at the point pf is then simply given by
the path-ordered product of propagators and orthogonal
transformations,

δ~φ
∣∣
pf

= OT
pf

Γ(pf , pf−1)Opf . . . O
T
p1Γ(p1, p0)Op1 δ

~φ
∣∣
p0

≡ Γ(pf , p0) δ~φ
∣∣
p0
. (6)

The curvature perturbation at the constant density sur-
face, ζ, is then obtained by a standard gauge transfor-
mation in the final patch,

ζ = Naδφ
a|pf . (7)

where Na ≡ ∂N/∂φa|pf . It follows that the two point
function,

〈δφa(k1)δφb(k2)〉 = (2π)3δ(k1 + k2)
Σab

k3
, (8)

evolves according to two copies of the propagator [15].
Hence the power spectrum may be expressed as,

Pζ(N) = NaNbΓ
a
cΓ
b
dΣ

cd(N∗) , (9)

where we assume the field perturbations crossing the
horizon at time N∗ are uncorrelated,

Σab(N∗) =
H2
∗

2
δab , (10)

an approximation we find to be in excellent agreement
with our numerical tests. With this method, the two-
point correlation function can be computed purely from
information already obtained in the process of construct-
ing the potential and it is trivial to obtain the full spec-
trum Pζ(k). This method will be described in full detail
in [16].

The spectral index ns and its running αs,

ns − 1 ≡ d lnPζ
d ln k

, αs ≡
dns

d ln k
, (11)
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can likewise be expressed in terms of the propagator Γab.
Combining results from [15, 17], the spectral index is
given by,

ns − 1 =
1

Pζ
NaNbΓ

a
cΓ
b
dn

cd
∗ , (12)

where,

nab∗ ≡
dΣ

d ln k

∣∣∣∣
∗

= (−εδab − uab)∗H2
∗ , (13)

and the matrix uab = ∂2
ab lnV . Similarly, the running

takes the form [18],

αs =
1

Pζ
NaNbΓ

a
cΓ
b
dα

cd
∗ − (ns − 1)2 , (14)

where,

αab∗ ≡
dnab

d ln k

∣∣∣∣
∗

(15)

=[(2ε2 − ε′)δab − u′ab + 2εuab]∗H
2
∗ − 2[uacn

cb]∗ ,

and primes indicate differentiation with respect to e-fold
time N .

Numerical procedure — We are now ready to compute
the spectrum of the curvature perturbation generated
during inflation in random multifield models constructed
through Dyson Brownian Motion. The potential (1) has
a number of parameters: the number of fields Nf , the
vertical and horizontal scales, Λv and Λh, and the initial
conditions for the potential v0|p0 , va|p0 and vab|p0 . In
this work we focus solely on effects emerging from large
Nf behaviour, leaving a more exhaustive study of the full
parameter space to future work [16].

For the remaining parameters we take v0|p0 = 1, and
chose va|p0 to set the initial value of the ε slow-roll param-
eter. The initial spectrum of vab|p0 is chosen to be that of
a fluctuated Wigner spectrum [19] with an approximately
vanishing smallest eigenvalue, taking the eigenvector of
the smallest eigenvalue of vab|p0 to be aligned with va|p0 .
We note that eigenvalue repulsion quickly modifies the
initial spectrum during Dyson Brownian Motion, leading
to mass spectra with features on scales � Λh, and an
insensitivity to the details of the initial distribution of
vab [7]. The models we consider are then of small-field
‘approximate saddle-point’-type with Λh < MPl.

Finally, for random potentials that give rise to at least
60 e-folds of inflation, we compute Pζ(k) for the scales
leaving the horizon between 50 and 60 e-folds before the
end of inflation; assuming it is approximately this 10 e-
fold range which is constrained by observations of the
CMB. The ‘vertical scale’, Λv, is chosen to set the am-
plitude of the power spectrum of the mode k0 exiting
the horizon 55 e-folds before the end of inflation to agree
with the COBE normalisation [20].

RESULT

Fig. 1 summarises our main result. Displayed are the
power spectra of a random selection of 25 inflationary
realisations for Nf = 2 and Nf = 50, with all other pa-
rameters fixed. When the number of fields is small (top),
the power spectra vary dramatically between realisations
and are typically highly non-linear [21]. In contrast,
when many fields are active during inflation (bottom),
the spectra become much simpler and can generically be
well described by a linear fit. Moreover, at large Nf the
distribution of the spectra also becomes less varied and
more predictive, with sharper distributions for the spec-
tral index and its running. In fact, for sufficiently large
Λh, the spectra generated during inflation become con-
sistently too red to match observational constraints.

The emergent simplicity at large Nf does not however
imply that this limit corresponds to an effectively single
field regime. Fig. 2 shows the evolution of Pζ(k0) and
ns(k0) on superhorizon scales for the same Nf = 50 re-
alisations shown in Fig. 1. We find the amount of super-
horizon evolution to always be substantial, often chang-
ing the amplitude of the spectrum by several orders of
magnitude. As superhorizon evolution of ζ occurs due
to the transfer of power from isocurvature to adiabatic
perturbations, this is a direct indication of multifield dy-
namics. Conversely, for Nf = 2 the evolution of Pζ(k0)
on superhorizon scales is, up to numerical accuracy, zero
(hence no plots are shown).

All inflationary realisations considered here are of

FIG. 1: Example power spectra for the scales leaving the horizon
between 50 and 60 e-folds before the end of inflation for
Nf = 2 (top) and Nf = 50 (bottom), with Λh = 0.4.
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FIG. 2: Superhorizon evolution of Pζ (top) and ns (bottom) for the
k0 mode, which leaves the horizon 55 e-folds before the end
of inflation, for the examples with Nf = 50 of Fig. 1. The
power spectra are normalised to their horizon exit value.
N = −55 corresponds to the horizon exit time and N = 0 to
the end of inflation.

small-field type with typical path length ‖∆φ‖ ∼ 0.7Λh,
immediately implying a small value for the tensor-to-
scalar ratio, r, according to the Lyth bound, r .
0.01 (‖∆φ‖/MPl)

2
[22]. Moreover, due to the sharp in-

crease of ε during this type of approximate saddle-point
inflation and, for large Nf , the superhorizon transfer of
power into the scalar perturbations, this bound is far
from saturated: for Nf = 2, r ≈ 10−7 and for Nf = 50,
r ≈ 10−10. The respective typical values of H∗ are ∼ 1011

GeV and ∼ 109 GeV.

DISCUSSION

Strikingly, our simulations of random and complicated
inflationary models show that at large Nf the ensemble of
inflationary realisations become more predictive, and the
generated power spectra become approximately linear.
We now explain how these effects can be understood in
terms of random matrix theory.

Improved predictability at large Nf — The variance
of the spectral index for an ensemble of random poten-
tials is a measure of the predictability of the model. As
mentioned, all our inflationary realisations are of small-
field type and have very small ε at horizon crossing. In
particular, terms in Eq. (12) proportional to ε∗ and gra-
dients ∂aV∗ are subdominant and the overall expression

simplifies considerably,

ns − 1 ≈ 2eaeb

(
vab

v0Λ2
h

)
∗
. (16)

Here, the unit vector ea ≡ NbΓ
b
a/‖NcΓcd‖ evolves

throughout inflation, but tends to primarily develop non-
negligible components in the directions of the first few
smallest eigenvalues of vab|∗, which then dominate the
contributions to ns. The variances of the smallest few
eigenvalues of vab|∗, and in particular that of the small-
est eigenvalue λ1, are then the main contributions to the
variance of the spectral index. Sufficiently close to the
initial patch, we can estimate the first two moments of

λ1 as follows: at the k:th patch, vkab = v0
ab +

∑k
l=1 δv

l
ab,

so that to second order perturbation theory,

λk1 = vk11 −
Nf∑
b′=2

cb′ |vk1b′ |2 , (17)

where cb′ = |λ0
1 − λ0

b′ |−1. Computing the first two mo-
ments of λk1 and then taking the continuum limit (k →
∞, s fixed), we find, 〈λ1(s)〉 = e−sλ0

1 − sσ2
∑Nf
b′=2 cb′ ,

and,

Var (λ1(s)) = 2sσ2

1 + sσ2

Nf∑
b′=2

c2b′

 . (18)

Thus, eigenvalue repulsion drives the mean of the small-
est eigenvalue to negative values, explaining the prefer-
ence for red spectra. For fixed, small s, the overall pref-
actor of (18) decreases as σ2 ∼ 1/Nf , indicating a shrink-
ing variance with increasing Nf , and hence an increased
predictivity of the model, in agreement with numerical
simulations. The second term of (18) grows with Nf and
hence indicates that the second order perturbation theory
quickly becomes insufficient for very large systems: the
actual probability distribution of the smallest eigenvalue
becomes sharper at large Nf due to strong eigenvalue
repulsion.

Smoother spectra at large Nf — Eigenvalue repul-
sion also explains the smoothening of the power spectra
at large Nf : when Nf is small, the smallest eigenvalue
undergoes Brownian motion with a high volatility, while
for large Nf large fluctuations become increasingly rare,
in agreement with our discussion of Eq. (18). Hence, the
running αs, which is a measure of deviation from lin-
earity, decreases with Nf , as we now show. Since our
realisations are always of the small-field type, Eq. (14) is
well approximated by,

αs ≈ 4eaeb
vacv

cb

v2
0Λ4

h

∣∣∣∣
∗
−4

(
eaebv

ab
∗

v0∗Λ2
h

)2

+2eaeb
vab
′

v0Λ2
h

∣∣∣∣
∗
. (19)

Following the same line of argument as above, for a qual-
itative estimate of the behaviour of αs, we assume ~e to
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be roughly aligned with the most tachyonic direction. In
that case the first two terms of Eq. (19) approximately
cancel and the last term, which is effectively the rate
of change of the smallest eigenvalue of vab, dominates.
Hence we attribute the radical decrease of αs to the de-
crease in volatility of the smallest eigenvalue at large Nf .
For large Nf the running falls within the range allowed
by current Planck data.

Final remarks — We have for the first time shown that
small-field inflationary models with many fields coupled
through random, highly featured potentials are capable
of generating simple power spectra that can be compat-
ible with observations. Large Nf random matrix theory
provides an intuitive explanation for the observed effects:
both the smoothness and the enhanced predictivity of
the spectra are simple consequence of eigenvalue repul-
sion, which becomes strong as Nf grows large. A more
detailed treatment of observational signatures, including
a study of the superhorizon evolution of the isocurva-
ture modes and the possible signals in the bispectrum
and trispectrum remain open questions that we intend
to address in future work.
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