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Cosmological inflation generates primordial density perturbations on all scales, including those far
too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact
minihalos of dark matter can form well before standard structure formation, if the perturbations
have sufficient amplitude. Minihalos affect pulsar timing data and are potentially bright sources of
gamma rays. The resulting constraints significantly extend the observable window of inflation in
the presence of cold dark matter, coupling two of the key problems in modern cosmology.

Introduction.— Observations of the cosmic mi-
crowave background (CMB) [1–3] provide firm evidence
for the existence of dark matter (DM), as do astrophys-
ical data on galaxy scales. The same experiments also
show that inflation provides a robust account of the
physics of the early Universe [4]. However, the micro-
physical bases of inflation and DM are unknown and re-
quire physics outside the Standard Model. The leading
candidates for DM are weakly-interacting massive parti-
cles (WIMPs), which arise in many well-motivated theo-
ries Beyond the Standard Model. Conversely, inflation
typically operates at energies near the scale of grand
unified theories [5]. This Letter demonstrates that joint
analyses of the DM and inflationary sectors yield tighter
constraints than those obtained by treating each sector
in isolation.

Dark matter and inflation are connected via primor-
dial density perturbations at small physical scales, which
arise from quantum fluctuations in scalar field(s) during
inflation [6]. If the amplitude of fluctuations at small
scales is significantly larger than at the scales of the
CMB and large scale structure, ultracompact minihalos
of DM (UCMHs) can form shortly after matter-radiation
equality [7–9]. Recent limits on the UCMH abundance
from astrophysical searches for DM annihilation [9–11]
constrain the power spectrum at scales far smaller than
those that contribute to the CMB. Limits from pulsar
timing [12] are projected to lead to similarly strong con-
straints, and would have the added benefit of not re-
quiring DM to annihilate. For even larger fluctuation
amplitudes, primordial black hole (PBH) formation is
possible [13], leading to complementary constraints on
inflation [14].

In this Letter we provide strong and robust limits on

the shape of the inflationary potential and the primor-
dial power spectrum by combining large-scale CMB data
with small-scale constraints on the number densities of
PBHs [15] and UCMHs [10, 12, 16]. This method allows
one to simultaneously test standard inflation and the na-
ture of DM, by cross-correlating the pulsar and γ-ray
signals. We apply these constraints to a flexible model
of inflation, which can reproduce the results of standard
scenarios, e.g. chaotic [17], hilltop [6], and small-field in-
flation. Under very conservative assumptions, we find
UCMHs provide comparable constraints on inflation to
PBHs, but that they could be even more powerful probes
of inflation if we could better understand their formation.

Ultracompact minihalos (UCMHs).— A UCMH, as
opposed to a regular DM minihalo, collapses before some
critical redshift zc & O(100). These halos form in iso-
lation, with extremely small velocity dispersions, via al-
most pure radial infall. This produces a steep density
profile ρDM ∝ r−9/4 [8, 18] with an inner plateau due to
finite DM angular momentum [9, 10] and possible DM
self-annihilation. This compact core makes UCMHs in-
sensitive to tidal disruption [19]. Because annihilation
scales with ρ2DM , they are excellent indirect DM search
targets [9–11]. Time-delay lensing can constrain the
UCMH number density, as a UCMH that passes near the
line of sight between Earth and a distant pulsar would
cause a change in its observed pulsation rate [12].

Assuming that UCMHs track the bulk DM density,
both on cosmological and Galactic scales, limits on
their cosmological abundance can be inferred from lo-
cal limits on the UCMH number density. If DM annihi-
lates, γ-ray limits from Fermi -LAT provide the strongest
bounds [10]. The impacts of WIMP annihilation in
UCMHs on reionisation may also be apparent in the
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CMB [20, 21]. Constraints from pulsars [12], based
on gravitational effects only, would be entirely model-
independent [22]; while extending over a smaller range
of scales, projected limits are at least as constraining as
gamma-ray constraints. Complementary but weaker con-
straints can also be obtained from CMB spectral distor-
tions [23, 24]. These limits constrain the processes that
could have formed UCMH-seeding overdensities in the
early Universe [10, 11, 16, 21, 25–28].

The fraction of DM in UCMHs with present-day mass
M0 is f = ΩUCMH/Ωχ = (M0/Mi)β(R) [10], where Mi is
the initial mass contained in an overdense region of co-
moving size R. For a Gaussian distribution, the fraction
of perturbations that collapse to form UCMHs is

β(R) =
1√

2πσχ,H(R)

∫ δmax
χ

δmin
χ

exp

[
− δ2χ

2σ2
χ,H(R)

]
dδχ . (1)

Here, the minimum density contrast δmin required for
UCMH formation is the minimum amplitude at horizon
entry that a perturbation must possess for it to have suf-
ficient time to begin nonlinear collapse before zc. Typi-
cally δmin ∼ 10−3 [8, 10]. If the initial overdensity is too
large, δχ ≥ δmax

χ ∼ O(1), a PBH rather than a UCMH

would form. However, since δmin
χ � δmax

χ , β(R) is in-
dependent of δmax

χ to a very good approximation. The
quantity σχ,H(R) is the mass variance of perturbations at
the time tkR of horizon-entry of the scale kR ∼ 1/R. It is
roughly proportional to the total size of perturbations at
tkR , σ2

H(R) = A2
χ(kR) δ2H(tkR), where the factor Aχ de-

pends on the initial spectrum of perturbations produced
during inflation and the expansion history since [29]. In
the special case of an almost scale-free spectrum with a
spectral index ns(k) that runs only at first order [10],
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whereWTH is the Fourier transform of a spherical top-hat
window function, Tr (Tχ) is the radiation (DM) trans-
fer function, and αs ≡ dns/d ln k is the running of the
spectral index ns. However, inflationary models gener-
ally have a scale dependence beyond αs and we there-
fore apply UCMH constraints using the local slope of the
power spectrum instead, i.e. we set αs = 0 and replace
ns(k∗)→ ns(k).

The most crucial non-primordial parameter for the
UCMH abundance is zc, the lowest redshift at which col-
lapse happens radially and in full isolation. Smaller zc
allows smaller-amplitude perturbations to form UCMHs,
as perturbations have longer to collapse. This param-
eter is poorly constrained, as it represents the redshift
at which the approximations of spherical collapse and

secondary infall break down [18]. These are excellent ap-
proximations at z & 1000, but when nonlinear structure
formation begins at z . 30, these conditions certainly
do not hold. In this Letter we use zc = 1000 as an ex-
tremely conservative choice, but show how limits improve
with zc = 500 and zc = 200, which are both realistic pos-
sibilities.

Limits on the UCMH abundance.— Gamma-ray
fluxes depend on ρDM , the DM mass mχ, annihilation
cross-section 〈σv〉, and annihilation branching fractions
into different final states. Lighter WIMPs produce larger
fluxes; we make the conservative choice mχ = 1 TeV. We
assume an NFW profile for the Milky Way, the canon-
ical ‘thermal value’ for the annihilation cross-section
〈σv〉 = 3 × 10−26 cm3 s−1, and 100% annihilation into
bb̄ pairs (which produce γ-rays mostly by neutral pion
decay). The limits are not especially sensitive to these
assumptions [9, 10]. We adopt the likelihood function of
Refs. [10, 26] for the abundance of UCMHs indicated by
Fermi -LAT γ-ray observations [30], based on the diffuse
flux from the Galactic poles, and the non-observation of
DM minihalo sources in the first year of all-sky survey
data.

If DM does not annihilate, pulsars provide the only
realistic means of detecting low-mass UCMHs. Here we
apply the projected constraints from the individual-halo
Shapiro delay detection method of Ref. [12], assuming
a transit detection threshold of 20 ns. Assuming non-
detection of UCMH transits within 30-year pulsar tim-
ing data provides the strongest projected gravitational
bound on UCMHs with masses ∼ 10−3M�. While the as-
sumed detection threshold provides relatively weak limits
on the fraction of DM contained within UCMHs com-
pared to those from gamma-ray searches, it may soon be
improved with the development of high-sensitivity pul-
sar timing arrays, improved understanding of the nature
of pulsar timing noise, and increased observation time
in existing millisecond pulsar surveys. The correspond-
ing limits on the power spectrum only apply in the local
vicinity of the scale kR, i.e., where the predicted power
spectrum is approximately locally power law. Although
pulsar limits are weaker than γ-ray ones, they are purely
gravitational, and would apply regardless of the precise
particle properties of DM.

The observable window of inflation.— We use a phe-
nomenological inflation model that can mimic many plau-
sible scenarios, including large-field and small-field infla-
tion, which have large and small values of the tensor-to-
scalar ratio r, respectively. We parametrize the inflation-
ary potential as

V (φ) =

4∑
n=0

Vn
n!

(φ− φ∗)n , (3)

where φ∗ is the inflaton field value when the pivot scale
k∗ = 0.05 Mpc−1 leaves the horizon, which is fixed to
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φ∗ = 0 without loss of generality. The real constants
Vn are related to the slow-roll parameters {ε∗, η∗, ξ∗, ω∗}
evaluated at φ = φ∗ by

V1 =
V0
√

2ε∗
MPl

with ε∗ =
M2

Pl

2

(
V ′

V

)2

, (4)

V2 =
V0 η∗
M2

Pl

with η∗ = M2
Pl

V ′′

V
, (5)

V3 =
ξ2∗V

2
0

M4
PlV1

with ξ2∗ = M4
Pl

V ′V ′′′

V 2
, (6)

V4 =
ω3
∗V

3
0

M6
PlV

2
1

with ω3
∗ = M6

Pl

V ′2V ′′′′

V 3
, (7)

and V0 = V (φ∗), where M2
Pl = 1/8π.

Expanding V to fourth-order in φ allows the primordial
spectrum Pζ(k) to have a running spectral index αs and
a higher order running-of-the-running α′s ≡ dαs/d ln k,
giving significant freedom in the shape of Pζ(k), although
this cannot easily replicate V (φ) with a step or sinusoidal
oscillations. The potential (3) was used in Refs. [4, 31,
32] as an empirical description of the primordial epoch,
constrainable in a CMB “observable window” of scales
10−6 . k/Mpc−1 . 10−1. Measurements of the power
spectrum put tight limits on the slow-roll parameters,
ensuring the plausible domain of validity of (3) is larger
than MPl, and therefore describes the potential through
O(10 − 100) e-folds of inflation. Furthermore, (3) is the
minimal polynomial potential for which ns, αs, and α′s
are independent and potentially non-trivial.

Using the ModeCode inflation package [33], we solve
the equations of motion for φ(t) and the perturbations
δφ(t, k) numerically, assuming the Bunch-Davies initial
condition on sub-horizon scales [34]. We do not require
slow-roll to hold during inflation or V > 0 except at V0,
since inflation must end before V < 0. We also include
results using the inflation module from Class [35], which
replicates previous techniques [4, 31, 32]. We find no
difference between the two implementations where they
overlap.

For fixed Vn the number of e-folds N∗ between horizon
exit for the pivot scale k∗ and the end of inflation, as well
as the primordial power spectrum parameters As, ns, αs,
and α′s and the tensor-to-scalar ratio r0.002 at the alter-
nate scale of k = 0.002 Mpc−1, are derived parameters.

UCMH constraints on inflation.— Including UCMHs
and PBHs increases the highest constrainable wavevec-
tors in Pζ(k) to k ∼ 1018 Mpc−1, significantly extend-
ing the range ∆φ over which V (φ) can be reconstructed.
While the UCMH limits on Pζ(k) at these small scales
are orders of magnitude less severe than in the CMB
range, including them has a strong effect on the higher
order runnings in the spectrum. For identifying suc-
cessful inflationary solutions, we require that all modes
k ≤ 1018 Mpc−1 leave the horizon during inflation, cor-
responding to N∗ & 45. We assume inflation can end by

Scan # 0 1 2 3 4 5 6 7

CMB 3 3 3 3 3 3 3 3

γ-ray 7 7 3 7 3 7 3 7

Pulsar 7 7 7 3 7 3 7 3

PBH 7 3 7 7 7 7 7 7

zc — 1000 500 200

TABLE I. Scan specifications. The rows show when we use
CMB, γ-ray UCMH, (projected) pulsar UCMH, and PBH
data, and the redshift zc for UCMH formation.

Scan 0 Scan 2 Scan 6

ns 0.960+0.011
−0.011 0.9650+0.0104

−0.0094 0.9650+0.0101
−0.0097

αs 0.008+0.020
−0.020 −0.006+0.014

−0.014 −0.008+0.014
−0.012

α′s 0.035+0.037
−0.029 0.0025+0.0024

−0.0027 0.0005+0.0013
−0.0012

r0.002 < 0.28 < 0.14 < 0.12

TABLE II. 95.5% CIs for the primordial parameters from the
CMB-only (Scan 0), compared to conservative UCMH likeli-
hoods (Scan 2) and the tighter constraints from UCMH with
smaller zc (Scan 6).

a hybrid transition or some other mechanism not neces-
sarily captured in Eq. (3).

We obtain posterior probabilities for the primordial
spectra and inflationary parameters using the Cosmo++
package [36] and the nested sampling code MultiNest [37]
(plotted with pippi [38]). We use the Planck 2015
TT,TE,EE+lowP likelihood code [39] and the Fermi -
LAT and pulsar UCMH likelihoods described above.
We compute γ-ray and pulsar likelihoods for 10−6 <
k/Mpc−1 < 1018, applying at each k the correction for
the local slope of the power spectrum described in Ap-
pendix B3 of Ref. [10]; finally selecting the k that pro-
duces the strongest constraint.

We use uniform priors for the cosmological parameters
Ωbh

2, Ωch
2, h, and τ , and for the slow-roll parameters ε∗,

η∗, ξ2∗ , and ω3
∗, with a log prior for the ratio V0/ε∗ ∝ As,

matching previous analyses [4, 31].
We perform several scans with different assumptions

(Table I). The fiducial Scan 0 uses only CMB data and
agrees well with the Planck analysis [4]. Scan 1 adds
PBH constraints, employing a step-function likelihood
from the implementation of the limits of Ref. [15] in Dark-
SUSY [28], following Ref. [10]. Different scans use differ-
ent UCMH parameters: zc = 1000 (Scans 2–3), zc = 500
(Scans 4–5) or zc = 200 (Scans 6–7). Scans 2, 4, and
6 add only UCMH constraints from γ-rays, while Scans
3, 5, and 7 use projected pulsar limits instead. Table II
shows the 95% credible intervals (CIs) for the primordial
parameters for three scans.

Fig. 1 shows the 95% CIs for αs and α′s. Compared to
the CMB alone, using small-scale data (Scans 1–7) signif-
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FIG. 1. (Top row) 95% credible regions (CRs) for the running αs ≡ dns/d ln k and the running-of-the-running α′s ≡
d2 ns/d ln k2 of the primordial power spectrum at the pivot scale k∗ = 0.05 Mpc−1. Curves correspond to different combi-
nations of data. ‘UCMH-p’ and ‘UCMH-γ’ refer to pulsar and γ-ray constraints on UCMHs, respectively. Numbers in legends
refer to scans in Table I. The left and right panels are shaded by the posterior pdfs of Scans 0 and 5, respectively. (Bottom row)
95% CRs for the inflationary slow-roll parameters, shaded by the posterior pdf of Scan 5. The green dot shows predictions of
monomial models.

icantly tightens the credible regions on all the primordial
parameters, severely limiting the shape of the inflation-
ary potential. The 95% CI for the running-of-the-running
is 0 . α′s . 0.05 (Scan 2) or −1× 10−3 . α′s . 2× 10−3

(Scan 6), implying the non-observation of DM structures
can robustly constrain the highest-order derivatives of
Pζ(k). The posteriors depend strongly on zc, with much
tighter constraints for zc = 200 than for zc = 1000.
The UCMH likelihoods alone produce similar results to
PBHs, but only become truly competitive with PBHs for
zc . 500, while the combination of PBHs and UCMHs

with zc = 200 can constrain cosmological parameters
much more tightly than either UCMHs or PBHs alone.
More detailed knowledge of zc will thus be instrumental
in drawing tight constraints on primordial parameters
from UCMHs.

Fig. 1 also shows 95% CIs for the inflationary parame-
ters. Comparing to the Planck results, the first two slow-
roll parameters have a much narrower range, ε∗ . 0.009
and −0.025 . η∗ . 0.01. Scans 1–7 prefer inflation with
a lower value of the tensor-to-scalar ratio, r . 0.13, com-
pared to r . 0.28 at 95% CI for Scan 0, even though
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small-field inflation (ε∗ < η∗) is not given equivalent
weight to large-field inflation due to uniform priors on ε∗
and η∗ [40]. Scan 6 (zc = 200) has the tightest contours
for the inflationary parameters, with r . 0.12. Including
BICEP2/Keck Array CMB polarization data [41] might
further reduce r. The higher-order slow-roll parameters
ξ2∗ and ω3

∗ are pushed significantly toward zero by the DM
constraints, mirroring the reduced range of α′s in Fig. 1.
For comparison with some concrete models, we also show
the predictions of a simple potential V = λφn.

We have also artificially weakened the limit on Pζ from
UCMH constraints (not plotted) by a factor of ∼ 10, find-
ing little change in the results, as most scenarios predict
α′s > 0 and are ruled out by even weak limits on smaller
scales.

Conclusion.— Searches for UCMHs are sensitive to
a wide range of amplitudes and slopes in the primordial
power spectrum. UCMHs can thus be used to directly
probe the preferred parameter region in inflationary mod-
els, in a way complementary to the CMB. Under con-
servative assumptions about the particle nature of dark
matter, pulsar timing observations alone will be able to
exclude a large portion of the otherwise-viable region of
inflationary parameter space. If DM annihilates, non-
observation of γ-rays from DM point sources by Fermi
already imposes tight constraints.

We have demonstrated for the first time that even a
conservative application of the current understanding of
the formation and evolution of UCMHs leads to signif-
icant limits on inflation. Future analyses would benefit
from improved understanding of UCMH formation, par-
ticularly the minimum collapse redshift zc at which a
halo can be considered a UCMH that is not significantly
affected during the epoch of non-linear structure forma-
tion. Given the strength of the limits when we assume
zc . 500, urgent investigation is needed into the for-
mation and gravitational history of the earliest bound
objects in the Universe.
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