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Boson Sampling, the task of sampling the probability distribution of photons at the output of a
photonic network, is believed to be hard for any classical device. Unlike other models of quantum
computation that require thousands of qubits to outperform classical computers, boson sampling
requires only a handful of single photons. However, a scalable implementation of Boson Sampling
is missing. Here we show how superconducting circuits provide such platform. Our proposal dif-
fers radically from traditional quantum-optical implementations: Rather than injecting photons in
waveguides, making them pass through optical elements like phase shifters and beam splitters and
finally detecting their output mode, we prepare the required multi-photon input state in a supercon-
ducting resonator array, control its dynamics via tunable and dispersive interactions and measure
it with non-demolition techniques.

Introduction.- The first post-classical computation will
most probably be performed not on a universal quantum
computer, but rather on a dedicated quantum hardware.
A strong candidate for achieving this is represented by
the task of sampling from the output distribution of a
linear quantum optical network. This problem, known
as boson sampling, has recently been shown to be in-
tractable for any classical computer [1]. Aaronson and
Arkhipov demonstrated that sampling the distribution
of photons at the output of a linear photonic network
is computationally inefficient for any classical computer,
since it would require the estimation of an insurmount-
able amount of matrix permanents [2]. Such hardness
proof is remarkably important since it shows that in-
termediate quantum setups can challenge the extended
Church-Turing (ECT) thesis by suggesting a physical im-
plementation that computes more efficiently than a non-
deterministic Turing machine. In practice, the ECT the-
sis is not directly refutable since it refers to an asymp-
totically large scale implementation of a physical de-
vice, but the clear indication of a scalable setup and the
neat experimental demonstration of such computation in
medium-size devices would constitute a serious indication
to reconsider the ECT thesis.

The emphasis of the previous argument points to the
scalability issue. In fact, the original boson sampling
setup works with optical photons that are difficult to
generate as single photons in a deterministic way and
that, given the state-of-the-art, cannot be detected with
almost unit efficiency . Subsequent proposals have sug-
gested the use of different initial states, like two-mode
squeezed states [3, 4], photon added/subtracted coher-
ent states [5], or vacuum squeezed states [6]. These
modifications only partially solve the bottlenecks of non-
deterministic state preparation and detection efficiency
making the actual implementation of boson sampling ex-
ponentially demanding in the number of photons [7, 8].
A different approach to overcome such difficulties is the

use of alternative experimental setups, such as trapped
ions [9]. Unfortunately, the required interactions are not
the natural ones for the setup considered, so frequent and
localized laser pulses are necessary to constantly alter the
dynamics with active control techniques.

In this Letter, we propose the realization of boson sam-
pling with photons in the microwave regime by using su-
perconducting circuits. We show how microwave photons
are ideal for a scalable implementation satisfying the fol-
lowing three fundamental requirements of the problem:
I) deterministic state preparation, II) direct implementa-
tion of the appropriate many-boson dynamics, and III)
highly efficient photon-number measurements. In our
proposal, we substitute the open-end optical waveguides
with identical superconducting resonators, one for each
mode, and couple them through a superconducting ring
coupler implementing a tunable beam splitter Hamilto-
nian. Phase shifters are naturally implemented by tuning
the resonator frequency in an independent way with the
aid of an adjacent superconducting qubit. In this setup,
deterministic state preparation can be efficiently pre-
pared by loading the corresponding state of the qubit into
each resonator using the Jaynes-Cummings interaction in
circuit quantum electrodynamics (circuit QED) [10, 11].
The introduction of additional low-quality-factor (low-Q)
resonators allows the system readout through a quantum
non-demolition measurement. All of the required opera-
tions can be performed deterministically and with high
fidelity on state-of-the-art superconducting devices [12–
15]. This guarantees the scalability of our proposal and
suggest superconducting platforms as a major physical
candidate to the realization of large scale boson sampling
experiments.

Finally, the advantages of the proposed implementa-
tion do not only help one address computational com-
plexity questions alone, even if of primary importance.
Recently, a modified version of the original apparatus has
been shown to be the essential component of quantum
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FIG. 1. Experimental proposal for scalable boson sam-
pling with microwave photons. Cross-shaped transmon qubits
(green) are capacitively coupled to a high-Q resonator (blue)
and a low-Q measurement resonator (black). An XY con-
trol line allows single qubit rotations, while a Z control line
changes the qubit frequency through the external flux Φext.
A superconducting ring intersected by a Josephson junction
(purple), acts as a coupler between neighboring resonators.
The coupling is fully tunable through the external flux Φc.

simulators for molecular vibronic spectra [16]. The addi-
tional operations required to achieve such simulations are
displacement and squeezing operations, which are readily
carried out using superconducting circuits [17].

Boson Sampling Hamiltonian.- Boson sampling refers
to the situation in which N single photons are injected
in a M -modes photonic network characterized by the
unitary matrix U . Introducing the Fock number ba-
sis, i.e. the basis composed by states {|n1, n2, · · · , nM 〉}
having a precise number of photons nj in each mode
j = 1, 2, · · · ,M , we can write the input and output state
as

|ψin〉 = |11, · · · , 1N , 0N+1, · · · , 0M 〉 , (1)
|ψout〉 = R̂U |ψin〉 , (2)

where the transformation R̂U is defined through its ac-
tion on the bosonic creation operators by R̂U a

†
i R̂
†
U =∑

j Uija
†
j . Aaronson and Arkhipov showed that sam-

pling from the photon-number output distribution
P (n1, n2, · · · , nM ) = | 〈n1, n2, · · · , nM | R̂U |ψin〉 |2 is a
computationally hard task, provided that the number of
modes M ≥ N2 and that the unitary U is chosen ran-
domly according to the Haar measure [1].

Since any linear optical network can be constructed
with phase shifters (ps) and beam splitters (bs) alone,
R̂U can also be decomposed as the sequential product
of the corresponding unitary operations acting, respec-
tively, only on one or two modes. In particular, it has
been proven that any M ×M unitary matrix U can be
decomposed into K = O(M2) optical elements connect-
ing nearest-neighbor modes [18, 19], providing the factor-

ization R̂U = Û (K) · · · Û (1). Every operation corresponds
to the application of an appropriate Hamiltonian for the
specific time τk according to Û (k) = exp (−iĤkτk) and
most operations involving distinct resonators can be per-
formed simultaneously. The Hamiltonians have only two
possible forms (~=1 throughout)

Ĥbs
k = gka

†
ik
aik+1 + H. c. , (3)

Ĥps
k = φka

†
jk
ajk

, (4)

where indexes ik, jk = 1, · · · ,M label the resonator
modes involved in the k-th operation. Once introduced
in the operator Û (k), the quantities gkτk and φkτk define,
respectively, the beam splitter reflectivity and phase shift
associated to the k-th optical element. By applying these
building-block operations sequentially, one realizes the
complete boson sampling unitary R̂U . This procedure
offers the possibility of implementing boson sampling in
any platform capable of generating the above Hamiltoni-
ans. In particular, superconducting circuits associate an
extraordinary level of control to the required interactions.

Boson sampling with superconducting circuits.- Boson
sampling consists of three fundamental steps: i) initial
single-photon state preparation, ii) implementation of
the random unitary R̂U and iii) single-photon detection.
Here, we describe the specific circuit design to implement
all the necessary operations with microwave photons.

Our proposal consists of a series of high-quality-factor
(high-Q) superconducting storage resonators which are
coupled to each other by a tunable interaction that can
effectively be switched on and off. These resonators are
used for storage of the photons that will be processed to
carry out the boson sampling algorithm. At the same
time, each storage resonator is also coupled to a super-
conducting qubit to perform the crucial operations re-
quired by a boson sampling device (see Figure 1). While
this proposal is largely qubit independent, we have cho-
sen to illustrate it adopting the X-mon qubit [20] since
its cross-shaped design allows for both transverse and
longitudinal rotations without acting on the resonator
themselves. Finally, the design requires the X-mon qubit
to be also coupled to a low-Q (measurement) resonator,
which will be used to perform quantum non-demolition
detection of the photons stored in the storage resonator.
We now discuss how to implement all the fundamental
operations in superconducting setups:

I) Initial state preparation: We initialize the qubits,
initially far detuned in energy from the storage resonator
frequency, in the ground state |g〉. Then, we coherently
drive the first N X-mon qubits through their XY ports
to implement a π-pulse that brings the qubits to the ex-
cited state |e〉. This single qubit operation can be done
with extremely high fidelity, of around 99.92% as recently
reported in a similar system [12, 21]. By tuning the X-
mon frequency through the Z qubit control line, we bring
the qubits on resonance with the storage resonators for a
time t, activating a Jaynes-Cummings interaction of the
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FIG. 2. Pictorial description of microwave boson sampling
in a three-mode device, and comparison with its linear optics
counterpart. In the optical network photons generated from a
non-deterministic single photon source (SPS) travel from left
to right, passing through the three fundamental steps of boson
sampling I) state preparation, II) unitary dynamics and III)
detection. The corresponding operations in circuit QED are
illustrated in the panel above, where the color code indicates
which interaction is currently active. Qubits are depicted in
red if in the excited state |e〉, and green if in the ground
state |g〉. Fock state |0〉 (|1〉) is shown as an empty (full)
circle. Purple ring coupler are disconnected when faded. The
protocol is summarized in Table I.

form

HJC = ωsa
†a+ Ω

2 σz + gs(σ+a+ σ−a†) , (5)

where Ω is the qubit frequency, ωs the storage resonator
frequency and gs is the coupling constant. Applying this
interaction for a time t = π/gs moves the qubit excitation
onto the storage resonator |e〉⊗|0〉 → |g〉⊗|1〉, creating a
single-photon Fock state on the storage resonator. This
operation can be performed deterministically and with
high efficiency, as shown in [17]. Interestingly enough,
we are not limited to the generation of single-photon
states. More complicated states, such as higher-number
Fock states [22] and Gaussian states [23], can also be pre-
pared. As we will discuss later on, this would allow the
implementation of boson sampling with modified input
states in the form required by the quantum simulations
of molecular spectroscopy [16].

II) Unitary operation: Beam splitter operations of the
form (3) can be simply carried out by bringing two trans-
mission line resonators together. In the confluence of
their center conductors, evanescent waves couple the two
resonators allowing the photons to tunnel between them.
However, their coupling is determined by the fixed ge-
ometric arrangement of the resonators, resulting in a
static coupling gbs that can not be switched off. In order
to make the coupling switchable, different schemes have

been proposed theoretically [24–26] and implemented ex-
perimentally [13–15]. All these proposals are based on
superconducting rings acting as tunable couplers (cf. Fig.
1a). Switchability relies on a controlled quantum inter-
ference between the resonator wavefunctions, that either
adds them up or cancels each other out, depending on
a control parameter, namely the external magnetic flux
Φc threading the superconducting ring [25]. These tun-
able interactions have been realized both as qubit-qubit
[13] and as resonator-resonator couplers [14, 15], report-
ing on-off interaction ratios of about 104. Moreover, the
switching operation is very fast and takes only a fraction
of a nanosecond, that is to say a time scale much faster
than the resonator dynamics.

Phase-shifting operations can be implemented by
bringing the qubit off-resonance with the storage res-
onator, in the so-called dispersive regime where ∆s =
Ω − ωs � gs. Under this condition, the qubit induces
a state-dependent pull of the resonator frequency of the
form

Hdis =
(
ωs −

g2
s

∆s
σz

)
a†a+ 1

2

(
Ω− g2

s

∆s

)
σz, (6)

where the effective resonator frequency includes contri-
bution from φ = g2

s/∆s × 〈σz〉. As a consequence, the
phase accumulated by each photon in the resonator de-
pends on the qubit state, being proportional to 〈σz〉 = ±1
for the excited and ground state, respectively. Assuming
that every qubit is in the ground state |g〉, and equally
detuned with respect to its storage resonator, there is
no relative frequency shift between resonators. However,
relative phases between resonators can be arbitrarily cre-
ated simply by flipping the corresponding qubit to its ex-
cited state |e〉 and introducing a frequency modification
equals to 2φ. Thus, applying a dispersive interaction of
the form (6) to a desired qubit-resonator pair for times
tps ∈ [0, π/φ] one can introduce arbitrary relative phase-
shifts between any pair of adjacent storage resonators.

III) Readout: The first mechanism we envision consists
of mapping the storage resonator state back to the qubits,
by inverting the state preparation procedure. This mech-
anism is supposed to perfectly distinguish between an
empty resonator and a resonator occupied by a single mi-
crowave photon, as required in the original formulation
of boson sampling [1]. Bringing the qubits on resonance
with the storage resonators, the interaction in eq. (5)
causes Rabi oscillations that swap the boson sampling
resonator state |ψout〉 to the qubit [17]. While two or
more photons might have bunched together on the same
resonator, thus preventing the transfer to the qubit state
due to a photon-blockade effect [27], we can postselect
this event as we would do in any linear optics imple-
mentation. With the aid of a second, low-Q resonator,
we perform a quantum non-demolition detection of the
qubit state (see Figure 1). Measuring the transmission of
the measurement resonator, we detect with large fidelity
whether the qubits are in the ground or excited state, and
hence the photon state in the storage resonators [28].
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Step I: Step II: Unitary operator Step III:

Initial state preparation Beam splitter Phase sifting Measurement protocol

Physical system qubit-storage resonator resonator-resonator qubit- storage resonator qubit- measurement resonator

Hamiltonian Jaynes-Cummings beam-splitting dispersive dispersive

Relevant parameters ∆s = 0, t = π/gs ∆res = 0, tbs = π/gbs φ = g2
s/∆s, tps = π/φ ξ0 = g2

m/∆m, tm = 1/κm

Figures of merit gs/2π ' 150MHz gbs/2π ' 30MHz φ ' 20MHz, κs/2π = 1 KHz ξ0 = 30MHz, κm/2π = 20MHz

TABLE I. Summary of the microwave boson sampling implementation. For each step of the protocol (columns), we display the
key physical systems involved in that step, the Hamiltonian ruling the system dynamics, as well as the relevant parameters and
their figures of merit. In step I, qubit and storage resonator interact of resonance via Jaynes-Cummings Hamiltonian. In step II,
storage resonators are coupled on resonance via beam-splitter interaction for the purposes of beam splitting operations, while
an off resonance, dispersive interaction with the qubit implements relative phase shifts. In step III, off resonance dispersive
interaction, this time with the measurement resonator, is used for quantum non-demolition detection.

A second readout mechanism works as a high-efficient
quantum non-demolition photon counter. The measure-
ment mechanism is based on qubit-photon logic gates
[29]. Within the dispersive regime, where the qubit is
detuned by an amount ∆m, the effective qubit frequency
is lifted due to the photons in the storage resonator
according to Ω̃n = Ω + ξn, where the dispersive shift
ξn = (2n + 1)g2

s /∆, depends on the number of photons
n on the storage the resonator. Then, by sending coher-
ent microwave signals at the different frequencies of the
qubit Ω̃n, we perform a π-rotation on the qubit, contin-
gent on the storage resonator state |n〉: when the driving
microwave hits the qubit at its resonant frequency, we
flip the qubit state |g〉 → |e〉, which will, in turn, create
a displacement of the measurement resonator frequency
[28]. By tracking the transmission on the measurement
resonator, we determine the number of photons n in the
storage resonator in at most n trials. As far as boson
sampling is concerned this would normally correspond to
one or two attempts to measure the resonator. Each read-
out can be performed with efficiency of about 90% [29]
and, since the measurement is non-demolition, one can
repeat the measurement many times to exponentially re-
duce the probability of failure. The latter readout scheme
represents a remarkable feature of our microwave setup
that is absent, in its deterministic form, in linear optical
setups. Figure 2 illustrates a pictorial comparison of a
three-mode boson sampling implementation with super-
conducting circuits and the original linear optical net-
work. A summary of the whole microwave boson sam-
pling protocol can be found in Table I, where we present
the most relevant parameters together with their exper-
imental benchmarks.

Generalized boson sampling in circuit QED. Consider
the very same device presented to tune the resonator-
resonator couplings. The specific form of the interac-
tion in eq. (3) is obtained in the rotating wave approx-
imation starting from the more accurate form Hint =
gk(Φc)(a†k + ak)(a†k+1 + ak+1). As detailed in [25], when
the external magnetic flux through the coupler Φc oscil-
lates at the appropriate frequency ωc = ωk + ωk+1, the
interaction effectively produces two-mode squeezing in

the frame rotating at the coupler frequency. Simultane-
ously, a displacement operation can be straightforwardly
introduced by simply driving the storage resonator it-
self. The combined action of displacement and squeezing
is interpreted as the required state preparation step of
modified boson sampling setups [3, 16]. The other essen-
tial requirement is the ability of determining the parity
or counting the number of photons in a resonator. In
essence, we exploit the nearby qubit to check a single
occupation number of the storage resonator at a time,
effectively implementing a quantum non-demolition pho-
ton counter. By virtue of the suggested protocol, our
proposal constitutes, to the best of our knowledge, the
first scalable implementation of any practical application
of boson sampling.

Discussion and Conclusion.- To address the feasibility
of our proposal, we have to understand how the require-
ments on the single operation affect the overall scalabil-
ity. Loading and measuring the resonator is performed
only once per run, while a typical operation consisting
of a beam splitter followed by a phase shifter requires
a time (tbs + tps) ' 0.3µs (see values reported in Ta-
ble 1). This time has to be compared with the storage
resonator lifetime, which would probably be the limiting
factor to run a successful experiment. High finesse copla-
nar waveguides resonators with quality factors above one
million have been reported [30, 31], yielding cavity decay
rates κ ' 2π × 1 KHz corresponding to a cavity lifetime
tκ = 50µs. Thus, one could implement a total number
of operations tκ/(tbs + tps) ' 500 before the photons are
lost. Since boson sampling is believed to be hard for
N ∼

√
M , we can successfully manipulate ∼ 20 photons.

The above analysis provides a preliminary estimate
based solely on the ratio between the coherence time of
superconducting devices and the time for a single opera-
tion. A more careful analysis should involve the fidelity
of those operations as well. We discuss the three steps
separately. Firstly, loading a single photon can be done
with an overall fidelity FI = F1 × F2, where F1 is the
fidelity of the qubit π-pulse and F2 the fidelity of the
qubit-resonator swap. Experimentally demonstrated per-
formance such as F1 = 99.9%, and F2 = 99.4% [32] yields
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a success probability P = (FI)N ' 0.87 for N = 20.
Secondly, Leverrier et al. [33] showed that the average
fidelity on each beam splitter and phase shifter opera-
tion should scale as FII = 1 − O(1/N2) in order to
implement a unitary U that provides a classically-hard
output probability distribution. Recently reported qubit-
resonator swap fidelities Fswap = 99.4% that are arguably
very close to the required FII ≈ 99.75% for a successful
20-photon experiment. Finally, the total fidelity for the
measurement step is given by FIII = F2 ×F3, where F3
is the qubit read-out fidelity. Assuming the resonators
are not thermally populated, and using F3 = 99% one

gets a success probability P = FNIII ' 0.80. These num-
bers are well above the thresholds reported in other boson
sampling platforms, and show that the first post-classical
computation is within experimental reach with today’s
technology using superconducting circuits.

In conclusion, we propose a realistic architecture for
scalable boson sampling with superconducting circuits,
which allows for deterministic state preparation and pho-
ton counting. Moreover, nonlinear operations such as
squeezing are now available to realize the first practical
application of boson sampling in the context of molecular
spectroscopy.
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