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The unique properties of the individual lipids that compose biological membranes together de-
termine the energetics of the surface. The energetics of the surface in turn govern the formation
of membrane structures and membrane reshaping processes, and will thus underlie cellular-scale
models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling.
The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. The
letter describes observations from simulations of unexpected non-additive compositional curvature
energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model
is developed that connects molecular interactions to curvature stress, and which explains the role of
local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated
acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive cur-
vature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding
between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below
which the lipid prefers negative curvature.

Phospholipid surfactants are the major structural com-
ponent of the membranes that separate aqueous com-
partments in the cell. A bilayer formed of phospholipids
is composed of two oppositely facing leaflets, with polar
lipid headgroups facing the aqueous sides, and an oily
interior. The surface is soft and effectively tensionless;
it is deformed in cellular processes like endocytosis [1],
vesicle fusion [2, 3], and viral entry [4]. Specific lipids are
thought to substantially stabilize these deformed mem-
branes due to their ability to support non-lamellar phases
with pore-like character [5–8]. For example, caveolae are
pits enriched in lipids such as sphingomyelin, cholesterol,
and signaling proteins [9]. How caveolae maintain en-
riched lipid concentrations, however, remains an open
question. A popular hypothesis is that lipid localization
is stabilized by the formation of a liquid ordered phase
(Lo) [10, 11], favored by sphingomyelin and cholesterol.
Recent experiments suggest that Lo-like mixtures prefer
highly curved membranes [12], offering a mechanism but
awaiting a theoretical explanation.

These important biophysical problems — how does
lipid composition determine the energetics of membrane
deformations, and how do lipids co-localize at specific
(curved) locations on the cell surface — are thus of
considerable interest for a broad range of physiological
processes. Predicting the material properties of the bi-
layer as its composition is varied is an ideal problem for
simulation as it relies on precisely controlled conditions.
Furthermore, one of the main conclusions of this work
is that the fundamental experiment (the osmotic pres-
sure dependence of the inverse hexagonal lipid phase)
used determine lipid curvature is misleading in impor-
tant cases (here, cholesterol and palmitoylsphingomyelin,
PSM). The underlying reason is fundamental — lipid
spontaneous curvatures will frequently not be additive.

The starting point for describing the curvature prop-

erties of the bilayer is the Helfrich Hamiltonian [13],

F̄H =
kc
2

(c1 + c2 − c0)2 + kgc1c2 (1)

F̄ ′H(0) = −kcc0, (2)

a second-order expansion of the free energy (F̄H) per unit
area of a lipid leaflet in terms of the sum and prod-
uct of the principal curvatures (c1, c2) of the surface.
The force constant for bending is the bending modulus
kc, kg is the Gaussian curvature modulus, and c0 is the
spontaneous curvature. Here kc and c0 are defined on a
leaflet/monolayer basis, rather than for a whole bilayer.
The first derivative of the free energy with respect to total
curvature, evaluated at zero curvature, is denoted F̄ ′(0)
and is important because it is an observable of a simula-
tion, and its sign implies that of c0. The sign convention
for c is that positive curvature is convex with respect to
the headgroups.

The spontaneous curvature displays a wide range de-
pending on lipid type, from highly positively curved for
single-tail phospholipids [14], to highly negative for lipids
with a phosphatidylethanolamine head group [15]. In
applications of the Helfrich Hamiltonian to membrane
bending, the additivity assumption for c0 is ubiquitous,
see e.g., Refs. [16] and [17]. For a mixture of two lipids A
and B with fractions fA and fB, and spontaneous cur-
vatures cA0 and cB0 , the spontaneous curvature is

cmix
0 = fAcA0 + fBcB0 . (3)

Violation of Eq. 3 indicates clearly that lipid-lipid inter-
actions couple strongly to curvature; i.e., the environ-
ment around a lipid affects its curvature preference. A
non-additive effect of cholesterol for saturated or unsatu-
rated chains was previously observed for kc [18], but the
experiment is insensitive to c0.
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This paper reports two cases of strong non-linearity
in lipid mixtures simulated with the CHARMM all-atom
forcefield [19], evident as a violation of Eq. 3 confirmed
by computing F̄ ′(0) from Eq. 2: (i) The effect of choles-
terol on lipids with saturated chains is dramatically dif-
ferent from those with unsaturated chains. (ii) PSM hy-
drogen bonding interactions induce positive curvature at
high PSM concentration. Both of these lipids are critical
structural components of the plasma membrane.

The distinction between non-linearity and non-
additivity is subtle. For example, cholesterol may have
two different linear effects on F̄ ′(0) at low concentration,
depending on its lipid matrix. Yet this still could imply
that its effect is non-additive. Observing a non-linear de-
pendence of F̄ ′(0) on composition directly contradicts a
local, additive model of lipid mixtures. Important dis-
tinctions between the locality of lipid properties, linear-
ity, and additivity are discussed in detail in the Supple-
mental Information, §IV [20].

Experimentally the spontaneous curvature c0 of a lipid
is determined by forming the inverse hexagonal phase of
the lipid [15]. At zero osmotic stress [32], the curvature
observed by x-ray scattering is c0. Upon addition of small
quantities of a test lipid to a host matrix of (typically) di-
oleoylphosphatidylethanolamine (DOPE), the curvature
preference changes [14]. Under the additive assumption,
c0 of the test lipid is obtained. For mixtures violating
Eq. 3 the inferred c0 will depend strongly on the host
matrix, yielding values that would be incorrect in a dif-
ferent target membrane composition.

Molecular simulations yield values of F̄ ′(0) (here the
subscript H is dropped as the model is no longer re-
stricted to Helfrich) by computing the lateral pressure
profile, and then calculating the first moment of a single
leaflet via [33, 34]:

F̄ ′(0) = −
∫ Lc/2

0

z[pT (z)− pN (z)]dz (sim). (4)

The integration is taken from z = 0, the bilayer center,
to the top of the periodic cell. Note that in terms of the
Helfrich Hamiltonian, F̄ ′(0) is −kcc0. See §V of the SI
for a discussion of how the pressure profile is translated
to F̄ (0), §VI for how the profile is calculated, and §VII
for an analysis of finite system size effects.

In a simulation it is simple to change lipid composi-
tion, compute F̄ ′(0), and so test Eq. 3. A modest 100
nanosecond simulation (the minimum length used herein)
achieves sufficient certainty. This timescale is sufficient
for lipids to change their interacting partners multiple
times, even in the case of 100% PSM bilayers where dy-
namics are slowed.

Before discussing the values of F̄ ′(0) that indicate non-
additivity for cholesterol and PSM shown in Figs. 1 and 3,
a simple mechanical model of curvature will be presented
to interpret the curvature dependence of the the lipid-

tail ordering effect of cholesterol and of PSM hydrogen
bonding.

Mechanical curvature model

Consider a minimal description of the stresses in a lipid
bilayer with a net cohesive and a net expansive part.
The cohesive force is a combination of oily tail attraction
and minimization of the hydrophobic/polar surface of the
bilayer, with dFcohesive

dA = Π positive; The effect of tail

chain entropy acts to expand the surface, with dFc.e.

dA =
−Π to give zero total surface tension. Below, Π will be
estimated using polymer brush theory, following Ref. [35].
First it is necessary to estimate how changes in these
forces affect F̄ ′(0).

A pivotal first step is to assign these forces to regions
of the bilayer. If the acyl chain contribution is assigned
uniformly to the tail region, and the cohesive interaction
to a surface dividing the polar and apolar regions (see SI
§I for details), then for DOPC F̄ ′(0) = 0.50 kcal/mol/Å
is obtained — about six times higher than expected. The
discrepancy is likely due to the simplified assignment of
the cohesive and expansive interactions. For example,
moving part of the cohesive interaction into the tail re-
gion under the constraint of zero tension has the effect of
reducing the negative curvature propensity of the leaflet;
a similar result is obtained by including steric repulsion
of headgroups.

Evans and co-workers experimentally validated a
model of the interplay between chain entropy and the
cohesive stress Π [36]: polymer brush theory. Chain
confinement is parameterized by x, the ratio of the tail
length hl to its theoretical maximum all-trans extension,
h0
l , with x = hl

h0
l

ranging between zero and one. For short

chains, Flory showed that the free energy of a confined
freely-jointed chain is approximately:

Fc.e. ≈
3kBTns

2
x2, (5)

accurate up to ≈ 90% of maximum chain extension [37].
Assuming incompressibility, the projected area is also re-
lated to x by x = ac

a , where a value of ac = 22.5 Å2 is
used for the limiting value of the chain area. Note that
none of the conclusions are changed by using a value of
20 Å2 for ac, but that the confinement values x are low-
ered and values of ns are increased for each system. The
derivative of the chain free energy with respect to area is

dFc.e.

da
= −3kBTns

ac
x3, (6)

and within this model is equal to −Π. The strength of
the force is modulated by the degree of confinement (large
values of x) and the number of independent units of the
polymer (ns). Note that the quantity ns is treated as an
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inherent property of the acyl chain that, when confined,
cannot be computed by the standard means of polymer
theory [37]. Through interactions with the environment,
however, the chain may stiffen, decreasing ns. For ex-
ample, cholesterol condenses saturated acyl chains and
reduces the number of effectively independent polymer
segments and thus reduces lateral stress. The strategy in
this work is to infer ns from KA, as described below.

In Evans’ work, Π is determined by a model of the
chain free energy, which is balanced by all of the other
complex and unknown bilayer stresses that depend lin-
early on the area. Thus, both the first derivative Π and
the second derivative KA are related to confinement and
ns through:

KA = 6Π =
ns18kBTx

3

ac
(polymer brush theory). (7)

The value of ns can therefore be deduced from KA by

dividing by 18kBTx3

ac
. The value of KA is in turn available

from a zero surface tension simulation of a lipid bilayer
through the relation [38]:

KA =
A0kBT

〈(A−A0)2〉 (8)

Note that ns depends strongly on the limiting value of
ac chosen (directly and through x). Nevertheless, the
values of the Kuhn length for the acyl chains of dipalmi-
toylphosphatidylcholine (DPPC) and for polymethylene
melts are roughly equal (approximately 1 nm, or ns = 2).
Alternative reasonable choices for ac do not affect the
conclusions of this work.

A general conclusion of the polymer-brush model is
that without an enhancement of tail-cohesion, increasing
Π and thus increasing KA should promote a more positive
value of F̄ ′(0) (implying a stronger negative curvature
preference). As shown below, cholesterol in combination
with saturated acyl chains violates this trend that is seen
in the other lipids.

Non-additivity of cholesterol spontaneous curvature

Fig. 1 plots F̄ ′(0) for mixtures of cholesterol in bilay-
ers of diarachidonyl-PC (DAPC), 1-palmitoyl-2-oleoyl-
PC (POPC), and DPPC. Note that if F̄ ′(0) is inter-
preted through the Helfrich Hamiltonian to be −kcc0,
and with kc necessarily positive, the sign of F̄ ′(0) is the
opposite of that of c0. For DAPC and POPC, choles-
terol induces a stronger negative curvature preference,
consistent with inverse hexagonal phase measurements
in DOPE and DOPC [39] and implying that cholesterol
induces negative curvature. However, in DPPC, choles-
terol has a net positive effect on spontaneous curvature
for up to 33% cholesterol by mole, implying that choles-
terol has positive curvature. Due to the different behavior
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FIG. 1. The derivative of the free energy (per unit area) with
respect to curvature versus cholesterol mole fraction.
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FIG. 2. At left, the area compressibility modulus versus
cholesterol mole fraction from simulation. Selected points
are labeled with their chain extension values x as defined in
the text. At right, the number of independent effective poly-
mer segments, ns, versus cholesterol mole fraction. Values
for DPPC past 0.25 mole fraction cholesterol are dimmed be-
cause the Gaussian approximation for the free energy is likely
no longer valid in these highly constrained environments.

of cholesterol depending on the presence of saturated acyl
chains, it cannot be described by an additive model. Sim-
ulations of a liquid ordered phase with majority DPPC
and cholesterol indicate substantial condensation of the
acyl chains of DPPC [40], consistent with a reduction of
ns and a strong cohesive force in the tail region.

Figure 2 shows the area compressibility KA and ns

computed from simulations of phospholipid/cholesterol
mixtures. Selected points in the plot of KA have been
labeled with their corresponding value of x, illustrating
how the values of KA for DPPC are low considering how
confined the tails are (x closer to 1). For DPPC, in the
regime of applicable x, the number of independent units
drops with increasing cholesterol concentration, in con-
trast to the other lipids simulated.

The polymer brush model provides a consistent ex-
planation for why cholesterol-rich liquid ordered phases
prefer positive curvature relative to disordered phases.
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FIG. 3. The derivative of the free energy (per unit area) with
respect to curvature. The 100% PSM point indicated by the
circle, taken from a previous study [42], was run at 321K while
the others were run at 318K.

Condensing the alkane tails manifests as a reduction in
the number of independent polymer segments, as shown
by the trend in KA with confinement. This condensation
is driven by the cohesive effect of all-trans alkane chain
packing and thus induces positive curvature by creating
a cohesive interaction below the neutral surface of bend-
ing. As plotted in SI §III, the lateral pressure profile is
consistent with this mechanism.

Cholesterol also drives a positive spontaneous curva-
ture in more complex mixtures of lipids. An Lo mix-
ture of 0.55/0.47/0.30 DPPC/DOPC/Chol [40] obtains
a value of F̄ ′(0) = −0.116 kcal/molÅ, while a mix-
ture of 0.29/0.60/0.11 of the same lipids has more dis-
ordered chains, typical of a conventional fluid phase, and
F̄ ′(0) = 0.05 kcal/mol/Å (s.e. < 0.013 kcal/mol/Å).

Thus a local variation in membrane composition, as
is hypothesized to underlie membrane lateral organiza-
tion [41], also can change the sign of the local sponta-
neous curvature.

Non-linearity of sphingomyelin curvature stress

Figure 3 plots F̄ ′(0) for mixtures of DOPE with either
PSM or DOPC. Shown in red is a quadratic fit (b+mf +
kf2) to the PSM/DOPE values.

The quadratic variation of F̄ ′(0) by fraction PSM is
-0.42 ± 0.04. As expected, the variation in F̄ ′(0) for
DOPE/DOPC mixtures is fit well with either linear
(p = 0.34) or quadratic (p = 0.39, coefficient k= -0.05)
models; experiments in the inverse hexagonal phase at
relatively high DOPC concentration show no signs of
non-additivity [39]. The high quality of the quadratic
fit and small value of the slope m indicates that the cur-
vature preference of PSM is nearly indistinguishable from
DOPE at low concentration, consistent with a recent x-

ray experiment on PSM in DOPE [43]. The non-linear
variation of F̄ ′(0) indicates that PSM/DOPE lipid cur-
vature free energetics cannot be interpreted by a local
additive model (See SI §IV).

Much like the effect of cholesterol on saturated lipids,
the molecular explanation is that a cohesive interaction is
balanced by an expansive interaction between negatively
charged phosphate groups. In this case, however, the co-
hesive interaction is due to amide-amide hydrogen bond-
ing between PSM backbones. The difference between
the lateral pressure profiles of DOPE and PSM shows
this quite clearly, with a large cohesive peak near the
amide-amide hydrogen bond depth, balanced by a repul-
sion above (SI Fig. S1). The explanation for the balance
between amide cohesion and phosphate repulsion is fur-
ther justified by replacing a portion of the phosphatidyl-
choline head-groups with hydroxyls to form ceramide. In
simulations conducted at 340K, F̄ ′(0) for PSM/ceramide
mixtures of 0%, 5%, 10% and 20% ceramide is -0.088,
-0.057, -0.012, 0.105 kcal/mol/Å, respectively (s.e. <
0.011 kcal/mol/Å). That is, the positive curvature effect
of sphingomyelin is rapidly removed and replaced with
strong negative curvature. The lack of a strong repul-
sion to balance the cohesive effect of the amide hydrogen
bond (and thus maintain fluidity) is clear from the phase
behavior of ceramide, which induces gel phase domains
at even low fractions [44].

An alternative explanation for the data in Figure 3 is
that the spontaneous curvature is additive, but that it is
the globally averaged value of kc and c0 that determine
F̄ ′(0). While this model cannot be ruled out without an
independent, rigorous calculation of the bending modulus
for the mixture, it requires small concentrations of PSM
to influence the kc of DOPE non-locally and thus increase
the negative curvature strain of DOPE. This is discussed
at length in the SI, §IV.

The non-linear behavior of c0 for PSM mixture resolves
two experiments that appear to be in disagreement. Nu-
clear magnetic resonance experiments on small lipid vesi-
cles indicate sphingomyelin prefers the positively curved
outer leaflet [45, 46], consistent with a positive value of
c0. In contrast, x-ray crystallography of mixtures of sph-
ingomyelin and DOPE in the inverse hexagonal phase at
low sphingomyelin concentration (10% or less) show that
sphingomyelin has a weak effect on the negative cmix

0 of
the mixture [43], indicating that it also has a negative
curvature preference (though somewhat weaker than a
PE lipid). The simulations and theoretical analysis in
this letter resolve this discrepancy, predicting that PSM
behaves much like a standard glycero-PC lipid at low
concentration, yet develops a positive c0 when concen-
trations of PSM-PSM complexes become specific. The
effect may be enhanced by tail condensation of PSM,
much like the case with cholesterol.

The value of F̄ ′(0) cannot distinguish between two pos-
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sible models of curvature energetics of a mixture:

FH,l =
∑
i

fi

∫
kc
2

(c− c0,i)
2 (local) and (9)

FH,g =

∫
kc
2

(c−
∑
i

fic0,i)
2 (global), (10)

as they have the same derivative with respect to c but
differ in the chemical potential of lipid i in the leaflet.
Here, fi is the fraction of lipid i in the leaflet, and c0,i
is the spontaneous curvature of lipid i. The local model
is called this as the energetics are invariant even if fi
is computed individually for small patches. The differ-
ence is critical for interpreting the influence of curva-
ture stress on, for example, relative lipid composition of
the inner and outer leaflets of the plasma membrane (see
Ref. [17] in which FH,g was used). Although not apparent
from F̄ ′(0), it follows from our proposed local molecular
mechanisms that it is the local lipid composition that
determines energetics, rather than the global concentra-
tion. Thus, FH,l is appropriate for describing the curva-
ture dependence of the interactions between, e.g., sph-
ingomyelin, with c0,i determined by local composition.

In summary, a theoretical analysis of simulations of
lipid mixtures demonstrates that lipid spontaneous cur-
vatures are frequently non-additive. Changes in lipid
composition can have dramatic effects, including chang-
ing the sign of the spontaneous curvature. The assump-
tion of additivity underlies a widely used analysis of ex-
perimental data to determine spontaneous curvature, and
so the present results need to be taken into account when
analyzing such data. The results also have implications
for cellular function, by providing a mechanism to couple
complex membrane composition to the partitioning [47]
and conformation [48] of integral membrane proteins.

The SI contains a list of simulations, simulation
methodology, and other topics already noted in the
text [20].

This research was supported by the Intramural Re-
search Program of the National Institutes of Health
(NIH), National Heart, Lung and Blood Institute
(NHLBI) and Eunice Kennedy Schriver National Insti-
tute of Child Health and Human Development. It used
the NHLBI LoBoS cluster. E.L. was partially sup-
ported by NIH P20GM104316-01. Anton computer time
to construct the Lo and Ld ensembles was provided
by the National Resource for Biomedical Supercomput-
ing (NRBSC), the Pittsburgh Supercomputing Center
(PSC), and the BTRC for Multiscale Modeling of Biologi-
cal Systems (MMBioS) through Grant P41GM103712-S1
from the NIH. Feedback from anonymous reviewers of
the work substantially enriched the interpretation of the
data.

∗ Corresponding author: alexander.sodt@nih.gov; present
address: Eunice Kennedy Schriver National Institute of
Child Health and Human Development, National Insti-
tutes of Health, Bethesda, MD

[1] G. J. Doherty and H. McMahon, Annu. Rev. Biochem.
78, 857 (2009).

[2] R. B. Sutton, D. Fasshauer, R. Jahn, and A. T. Brunger,
Nature 395, 347 (1998).

[3] A. Grafmüller, J. Shillcock, and R. Lipowsky, Phys. Rev.
Lett. 98, 218101 (2007).

[4] S. C. Harrison, Nat. Struct. Mol. Biol. 15, 690 (2008).
[5] D. P. Siegel, W. J. Green, and Y. Talmon, Biophys. J.

66, 402 (66).
[6] D. P. Siegel and M. M. Kozlov, Biophys. J. 87, 366

(2004).
[7] Y. Kozlovsky, A. Efrat, D. Siegel, and M. M. Kozlov,

Biophys. J. 87, 2508 (2004).
[8] S. Aeffner, T. Reusch, B. Weinhausen, and T. Salditt,

Proc. Natl. Acad. Sci. USA 109, E1609 (2012).
[9] S. Sonnino and A. Prinetti, FEBS Letters 583, 597

(2009).
[10] E. J. Shimshick and H. M. McConnell, Biochemistry 12,

2351 (1973).
[11] J. H. Ipsen, G. Karlström, O. G. Mouritsen, H. Wenner-

ström, and M. J. Zuckermann, Biochim. Biophys. Acta
905, 162 (1987).

[12] J. B. Larsen, M. B. Jensen, V. K. Bhatia, S. L. Peder-
sen, T. Bjørnholm, L. Iversen, M. Uline, I. Szleifer, K. J.
Jensen, N. S. Hatzakis, and D. Stamou, Nat. Chem. Biol.
11, 192 (2015).

[13] W. Helfrich, Z. Naturforsch. 28, 693 (1973).
[14] N. Fuller and R. P. Rand, Biophys. J. 81, 243 (2001).
[15] R. P. Rand, N. L. Fuller, S. M. Gruner, and V. A.

Parsegian, Biochemistry 29, 76 (1990).
[16] M. Frewein, B. Kollmitzer, P. Heftberger, and G. Pabst,

Soft Matter 12, 3189 (2016).
[17] H. Giang and M. Schick, Biophys. J. 107, 2337 (2014).
[18] J. Pan, T. T. Mills, S. Tristram-Nagle, and J. F. Nagle,

Phys. Rev. Lett. 100, 198103 (2008).
[19] J. B. Klauda, R. M. Venable, J. A. Freites, J. W.

O’Connor, D. J. Tobias, C. Mondragon-Ramirez,
I. Vorobyov, A. D. Mackerell Jr., and R. W. Pastor,
J. Phys. Chem. B 114, 7830 (2010).

[20] See Supplemental Material at [URL] for an expanded dis-
cussion of the computation of F̄ ′(0) and its interpreta-
tion, and which includes Refs. [21–31].

[21] A. J. Sodt and R. W. Pastor, Biophys. J. 104, 2202
(2013).

[22] T. Baumgart, S. T. Hess, and W. W. Webb, Nature 425,
821 (2003).

[23] R. M. Venable, F. L. H. Brown, and R. W. Pastor, Chem.
Phys. Lipids 192, 60 (2015).

[24] P. Schofield and J. R. Henderson, Proc. R. Soc. Lond. A
379, 231 (1982).

[25] L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Pergamon, 1970).

[26] E. Lindahl and O. Edholm, J. Chem. Phys. 113, 3882
(2000).

[27] J. Sonne, F. Y. Hansen, and G. Peters, J. Chem. Phys.
122, 124903 (2005).

[28] B. S. Perrin, A. J. Sodt, M. L. Cotten, and R. W. Pastor,



6

J. Membrane Biol. 248, 455 (2015).
[29] T. Darden, D. York, and L. Pedersen, J. Chem. Phys.

98, 10089 (1993).
[30] H. C. Andersen, J. Comp. Phys. 52, 24 (1983).
[31] S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks,

J. Chem. Phys. 103, 4613 (1995).
[32] S. M. Gruner, V. A. Parsegian, and R. P. Rand, Faraday

Discuss. Chem. Soc. 81, 29 (1986).
[33] I. Szleifer, D. Kramer, A. Ben-Shaul, W. Gelbar, and

S. A. Safran, J. Chem. Phys. 92, 6800 (1990).
[34] R. Goetz and R. Lipowsky, J. Chem. Phys. 108, 7397

(1998).
[35] J. Pan, S. Tristram-Nagle, N. Kučerka, and J. F. Nagle,
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