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When a swelling soft solid is rigidly constrained on all sides except for a circular opening, it will
bulge out to expand as observed during decompressive craniectomy, a surgical procedure used to
reduce stresses in swollen brains. While the elastic energy of the solid decreases throughout this
process, large stresses develop close to the opening. At the point of contact, the stresses exhibit a
singularity similar to the ones found in the classic punch indentation problem. Here, we study the
stresses generated by swelling and the evolution of the bulging shape associated with this process.
We also consider the possibility of damage triggered by zones of either high shear stresses or high
fiber stretches.
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Soft solids play a key role in many biological and phys-
ical processes from active gels to swelling polymers [1].
The various patterns that they exhibit under constraints
and expansion are known to critically influence both mor-
phogenesis and the design of new micro-devices. A par-
ticularly dramatic example of shape formation in swelling
soft solids is found in the swelling of the brain. Brain
swelling occurs as a consequence of traumatic brain in-
sults such as strokes, tumors, or traumatic brain injury
and typically leads to raised intracranial pressure. If
the intracranial pressure remains too high, it prevents
blood to perfuse properly into the brain tissue and, over
time, may cause affected regions of the brain to die by is-
chemia. Through an osmotic imbalance, this dead tissue
induces more swelling that will further propagate damage
through the brain [2, 3]. To prevent such a catastrophic
cascade, a last recourse consists in performing a decom-
pressive craniectomy in which a large portion of the skull
is removed to allow the brain to expand. In this highly in-
vasive procedure, the brain mushrooms out of the skull as
seen in Fig. 1. If the opening is too small, large stresses
develop close to the opening leading to herniation and
possible venous occlusion. The bulging may also cause
large stretches in axons leading to axonal death and pos-
sible long-term disability [4, 5]. It is therefore crucial
to understand both the shape and stresses developed in
swelling soft solids as a function of the material parame-
ters, swelling, and geometry.

This clinical problem motivates a simple generic phys-
ical problem: when a swelling soft solid is constrained
to expand except through a circular opening, what is
the shape of the bulge? What are the stresses and
stretches developed throughout this process? To answer
these questions, we first consider a simplified version of
the bulging problem where an isotropic elastic solid in
frictionless contact with a plate is constrained to swell
through a circular opening as seen in Fig. 2. We look for
axisymmetric solutions for both the shape and stresses.
Finite-element simulations [8] of this problem for dif-
ferent geometries (Fig. 2) reveal the existence of drop-
shaped regions of high shear stress close to the contact

A

FIG. 1: Brain bulging following decompressive craniectomy.
A. Left fronto-temporo-parietal craniectomy in human ([6]).
B. MRI showing herniation and resulting ischemia (white ar-
rows) after 24 hours following craniectomy on a rat subject
to a middle cerebral artery occlusion [7].

boundary suggesting a singularity in the stresses. These
regions, studied experimentally in [9, 10], are reminiscent
of the stress localization found in other contact prob-
lems such as the Flamant-Cerruti solution [11] for point
loading or the punch problem [12–14]. In particular the
bulging problem, where zero tractions are prescribed on a
disk and fixed displacements are given outside the disk,
can be seen as the conjugate problem to the cylindrical
punch problem where displacements are prescribed over
a disk with zero tractions everywhere else. It can also
be obtained by taking the proper limit of the annular
punch problem [15]. Due to the highly localized nature
of this singularity, we expect the same type of stress sin-
gularity to appear in various geometries. Bulging due
to shear and torsion has also been studied in a classic
experiment by Rivlin in connection to Poynting’s effect
[16]. This bulging effect has also been used to study the
elastic properties of brain tissues [17].

Here, we first consider the exact solution for the
bulging problem in linear isotropic elasticity and use it
to obtain the bulging shape as well as the stress singu-
larity and the drop regions. We compare and comple-
ment this analysis with numerical solutions in large de-
formations and various geometries, before returning to
the brain bulging problem.
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FIG. 2: Bulging simulation. A. Cylindrical geometry. B.
Spherical geometry

We first consider an isotropic elastic half-space defined
by Ω = {x = (x, y, z) ∈ R3|z ≥ 0}. In this geometry,
a deformation is characterized by the displacement of a
material point x ∈ Ω to a point x + u ∈ R3. We use the
equivalence between two problems: the first one consists
in finding the elastic strains due the uniform swelling of a
half-space constrained by a horizontal plane (z = 0) with
a circular opening. The second one consists in finding the
strains developed in a half-space subjected to a fixed ver-
tical displacement (along z) of the boundary everywhere
except on a disk. Therefore, uniform swelling in this ge-
ometry can be studied within the classical framework of
elasticity [18]. Using this equivalence, we assume that
the vertical displacements uz are constant everywhere on
the boundary z = 0 except in a circular opening of radius
one centered at the origin.

In linear elasticity, valid for small displacements, the
strain tensor is E = 1

2

(
∇u + (∇u)T

)
. The Cauchy stress

tensor is then T = E/(1 + ν) [E + ν/(1− 2ν)(tr E)1]
with Young’s modulus E, Poisson’s ratio ν, and the
identity tensor 1. In the absence of body forces, the
Cauchy equation for elastostatics is ∇ · T = 0. Given
the unit normal n to the boundary, the bulging problem
is to determine the displacement and stresses such that
Tn = 0 on the unit disk, uz = δ outside the unit disk
and Tn − (n · Tn)n = 0 everywhere on the boundary
(i.e. frictionless boundary).

An elegant way to solve this contact problem is to use
the Papkovich-Neuber formulation and introduce a har-
monic potential φ(r, z), in the usual cylindrical coordi-
nates (r, θ, z), such that

u =
1 + ν

E

[
4(ν − 1)ω +∇

(
x.ω +

φ

1− 2ν

)]
, (1)

where ω = ez∂φ/∂z. All stresses and displacements can
then be obtained from φ. For instance, on the surface
z = 0, we have

Tzz = −∂
2φ

∂z2
, uz = 2

ν2 − 1

E

∂φ

∂z
. (2)

Therefore, our problem amounts to finding a harmonic
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FIG. 3: A. Bulge shapes obtained from the exact linear so-
lution (dashed) compared to the finite-element simulation
(solid). B. 3D shape of the bulge (linear solution, h = 0.733).
C. Internal displacements.

function φ = φ(r, z) such that

∂2φ

∂z2
= 0, 0 ≤ r < 1, z = 0, (3)

∂φ

∂z
=

E

2(ν2 − 1)
δ, r ≥ 1, z = 0. (4)

Using Collin’s method [19, 20], a solution of this problem
is found to be

φ =
Eδ

π(ν2 − 1)
=m

(∫ ∞
1

sF(r, z, s)ds

)
, (5)

where F(r, z, s) = log
(√

r2 + (z + it)2 + s+ it
)

. This

solution, together with (7), leads to the bulge shape

uz(r) = δ − h
√

1− r2, r ≤ 1, (6)

where h is the height of the bulge with volume Vbulge =
2hπ/3. Note that the contact angle is always π/2 since
u′z → ∞ as r → 1. A comparison between this exact
solution from linear elasticity and the shape obtained by
finite-element simulations is shown in Fig. 3A. Note that,
for comparison with the cylindrical geometry, the simu-
lations are done on a finite-size cylindrical domain, taken
sufficiently large as to not affect the stress-field close to
the opening. For comparison, the parameter h was taken
as the maximal value of the simulation at r = 0. As
expected, for small deformations (h <∼ 1/2), the exact
solution provides an excellent description of the profile.

The shear stresses are given by

Trz = z
∂3φ

∂θ∂z2
. (7)

In Fig. 4, we show that these stresses are in excellent



3

r
z

Approximation

Exact solution

0.85 0.90 0.95 1.00 1.05

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0

0

1 2

c=-0.7
c=-0.9

c=-1.1

α +~
111

o

α −~
32

o

A. B. C.

0 1 2

3 -0.2

-0.6

FIG. 4: Shear stress in the reference configuration: A. The
numerical simulations and B. the exact solution. C: Com-
parison between the exact and approximate solution for the
damage drops (c = εmax/h, ν = 0.45, Eh = 1).

agreement with the ones obtained from finite-element
simulations with deviations away from the singularity
due to nonlinear and boundary effects. We also ob-
serve characteristic damage drops, which we defined as re-
gions of high absolute shear stress (regions where |Trz| >
Eεmax/(1 + ν) for a fixed maximal shear strain εmax). It
is of interest to characterize the volume and orientation
of these regions as a function of the size of the bulge h.
For large enough εmax, these regions are localized close to
the contact boundary. It is therefore possible to simplify
the rather cumbersome exact solution by considering its
asymptotic expansion for small values of ρ, where ρ is
the distance between a material point and the boundary
point (r = 1 + ρ cosα, z = ρ sinα). To order O

(
ρ3/2

)
,

we find

T app
rz =

E

4
√

2(1− ν2)

h
√
ρ

× sinα

(
cos

3α

2
− ρ

4

(
6 cos

α

2
+ cos

5α

2

))
.(8)

The regions such that |T app
rz | > Eεmax/(1 + ν) form two

drops as shown in Fig. 4, in reasonable agreement with
the exact solution when εmax is large enough. From the
dominant terms in (8), the orientations of these two drops
is universal and given by

α± = 2 cos−1

(
1

2

√
1

10

(
25∓

√
145
))

. (9)

We also recover the expected scaling law ρ−1/2 of the
stress around the singularity as found in the classic punch
problem [14]. The total volume of these drops in the
range of validity (h/εmax

<∼ 0.5) is well approximated by
Vdrop ≈ 0.0183h2/(ε2max(1− ν)2).

Another important quantifier is the stretch of material
fibers. Here, we consider the stretch of a material fiber
normal to the surface in the reference configuration:

λz = 1 +
1 + ν

E

(
z
∂3φ

∂z3
+ (2ν − 1)

∂2φ

∂z2

)
. (10)

As can be seen in Fig. 5, the strain (λz−1) reaches a max-
imal value on the axis of symmetry (r = 0). This max-
imum is located at zmax =

√
ν/(2− ν). At this point,

the stretch becomes maximal in the incompressible limit
(ν → 1/2):

λmax = max
ν∈[0,1/2]

λz(zmax) = λz(
1√
3

) = 1 +
3
√

3h

8
. (11)
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FIG. 5: Vertical strain in the reference configuration. The
maximal value of the stretch is reached on the axis of sym-
metry. A. Finite-element simulation. B. Exact linear solution
(ν = 0.45, Eh = 1).
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FIG. 6: Swelling in spherical symmetry. The bulging angle
as a function of swelling compared to the geometric estimate
obtained by overlapping spheres (γ = 50o).

We now consider bulging in large deformations. For
larger swelling, the bulge extends not only radially but
also tangentially as shown in Fig. 6. An interesting indi-
cator of the shape is the angle between the tangent to the
bulge and the tangent to the sphere as shown in Fig. 6.
We compare this angle with a purely geometric estimate
obtained by computing the angle between two overlap-
ping spheres as a function of the relative volume increase
(i.e. added volume/original volume):

α = π − 4/3δ tan−2/3(γ/2)/(1 + cos γ) +O(δ2), (12)
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where γ is the opening angle. The favorable comparison
with the simulation performed in spherical geometry [21]
and shown in Fig. 6 indicates that in large deformations
the bulge tends to sphere up uniformly. We also note
the that the damage drops appear in the same regions
even for large deformations and no appreciable finite-size
effects are found.

We now return to the original brain problem. Clearly,
the brain is a much more complex material nonlinear
structure with multi-layers and multi-components. Yet,
the simple estimates obtained above can provide a use-
ful guide in further studies. In particular, there are two
possible well-know types of damage during craniectomy.
The first one is herniation due to high stress close to
the contact points. These regions of high shear stresses
correspond to the damage drops and, due to their uni-
versal nature, we expect to observe similar structures in
more complex geometries as seen in Fig. 2. The second
one is axonal damage due to the stretching of axon. It
is known that axonal damage may appear for strains as
low as 4% [5]. We conclude that even if we restrict defor-
mations so that all fiber strains remain below 20%, the
maximal value of the deformation given by λmax(h) = 1.2
is h ≈ 0.3, a relatively modest size bulge compared to the
ones shown in Fig. 1.

In order to check the possible relevance of these results
in the actual problem of decompressive craniectomy, we
consider the isotropic and homogeneous swelling of an
elastic material whose undeformed shape is a brain en-
cased in a skull and compute the stress profile in order to
obtain regions where damages may first appear [22]. The
material is constrained by the skull except through an
opening where it can bulge out. We model the elastic re-
sponse of the material by a Mooney-Rivlin strain-energy
density with independent coefficients for white and grey
matters as well as cerebellum and cerebral spinal fluid
[23] based on various experimental data sets [24, 25] (See
Supplemental Material at [URL will be inserted by pub-
lisher] for a description of the code). Swelling is modeled
through a multiplicative decomposition of the deforma-
tion gradient [26]. The simulation of a decompressive
craniectomy shown in Fig. 7 reproduces the characteris-
tic bulging observed clinically. This simulation indicates
the existence of very high stresses close to the contact
point and elongated regions of high shear stress, reminis-
cent to the damage drops obtained in simpler geometries,
as well as a region of high fiber stretch below the surface
as expected from the idealized case.

Initially motivated by the problem of decompressive
craniectomy, the analysis of bulging in swelling soft
solids reveals a number of interesting features that are
found universally: During bulging, the stress develops a
singularity that scales as the inverse square root of the
distance to the opening. Regions of high shear stresses
are characterized by finite regions, i.e. the damage
drops, whose orientations close to the singularity, were

FIG. 7: Finite-element simulation for 10% brain swelling. Re-
gions of high shear stress are circled. Insert: Transverse sec-
tion showing radial fiber stretch. Region of high radial stretch
is circled.

characterized explicitly. Moreover, regions of high
vertical strains, representing potential axonal damage,
are located around the axis of symmetry and can be
quantified by the height of the bulge. We expect these
features to be universal in other bulging problems since,
close enough to the boundary, stresses and deformations
are highly localized.
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