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We present a theoretical and experimental study of the interplay between spin-orbit coupling
(SOC), Coulomb interaction and motion of conduction electrons in a magnetized two-dimensional
electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of
spin-orbit twisted spin-waves, whose energy dispersions and damping rates are obtained by a simple
wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by
Raman scattering measurements. With optical gating of the density, we vary the strength of the
SOC to alter the group velocity of the spin wave. The findings presented here differ from that of
spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel
applications in spin-wave routing devices or for the realization of lenses for spin waves.

Spin-wave based transistors are an appealing alterna-
tive to the traditional charge-based transistor, since spin
waves carry information with reduced dissipation com-
pared to charge currents [1, 2]. However, one still has to
develop efficient methods for controlling the spin waves
with low energy cost, a condition not satisfied by the
manipulation with magnetic fields. Spin-orbit coupling
(SOC) for conduction electrons is a quantum-relativistic
interaction emerging for spin-wave control [3–9]. An ex-
tensive body of literature has been devoted to spin waves
in ferromagnets subject to the Dzyaloshinskii-Moriya in-
teraction (DMI). The DMI arises from SOC [10, 11] and
causes chiral spin-wave dispersions [7, 12] and damping
[13]. In most systems the DMI energy D remains an em-
pirical parameter with a magnitude of a few percent of
the exchange energy J [3, 14, 15].

The DMI is perfectly suited for spins strongly or
weakly localized. However, for delocalized spins in a
Galilean invariant system, for which the kinetic energy
interplays with the Coulomb-exchange and the SOC, all
three protagonists will be responsible for the spin-wave
dynamics, like in a magnetic two-dimensional electron
gas (2DEG). One thus expects a new type of behaviour
for the spin waves. In our previous works [6, 16], we used
the concept of a macroscopic spin-orbit field enhanced
by interactions. Here, by contrast, we predict the ampli-
tude and direction of the chiral wave-vector shift of spin
waves using a transformation of the many-body Hamil-
tonian of a magnetic 2DEG. We introduce the concept of
spin-orbit twisted spin waves and report conclusive ex-
perimental evidence. This leads us to the possibility of
optically tuning the electron density to modify and even
reverse the group velocity of the spin waves. We observe
significant differences between the spin-orbit twisted spin
waves and the DMI spin waves. Thus, in delocalized spin
systems, our findings show that SOC offers the opportu-
nity to control both the direction and velocity of spin

waves without affecting the spin-wave stiffness and the
damping rate.

Spin waves in a magnetic 2DEG. We focus on spin-
wave excitations of a magnetic 2DEG embedded in a
doped Cd1−xMnxTe quantum well containing a fraction
x = 0.013 of substitutional Mn impurities. This sys-
tem is ideal to study spin excitations of itinerant 2D
electrons, because of its simple free-electron-like conduc-
tion band. The application of a moderate magnetic field
B (of order 2 T) parallel to the plane of the quantum
well polarizes the spins localized on the randomly dis-
tributed Mn atoms, which in turn polarizes the electron
gas through exchange interaction [17]. This causes a Zee-
man splitting Z of order meV of the electronic states in
the conduction band [18], with a negligible orbital quan-
tization. One thus obtains a spin-polarized 2DEG, with
two spin-split parabolic subbands. The 2DEG electron
density (the number of electrons per unit area) is n2D =
2.7× 1011 cm−2 and the mobility is 1.7× 105 cm2/Vs.

Such a 2DEG supports spin-wave modes located in the
energy gap below the continuum of single-particle exci-
tations, the paramagnet-equivalent of the Stoner contin-
uum [19–21]. The energy dispersion of these spin waves
is quadratic with the in-plane momentum q [21–23]:

~ωsw(q) = Z + Ssw
~2

2m∗
q2 + iηq . (1)

Here, ωsw(q) is the spin-wave angular frequency, Ssw is
the spin-wave stiffness in units of ~2/2m∗, m∗ is the elec-
tron band mass [24], and ηq = η0 + η2q

2 is a momentum-
dependent damping rate, also quadratic in q, which has
an intrinsic part (η2q

2) caused by a friction with multi-
ple single particle excitations [25, 42] as experimentally
shown [22] and a sample dependent part (η0) dominated
by magnetic disorder [22]. In contrast with magnons in
ferromagnets, Ssw is here a negative number, i.e., the
spin-wave energy starts at the bare Zeeman energy Z and
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Figure 1. (a) Top plane: Raman incoming (κi) and outgoing
(κs) photon wavevectors. q is the in-plane momentum of the
spin wave probed by the Raman process. The amplitude and
direction of q are controlled by θ and ϕ, respectively. The
magnetic field, parallel to ez, is always perpendicular to q.
Bottom plane: the spin-wave oscillation in real space is associ-
ated with an out-of-phase oscillation of the two Fermi disks in
momentum space with respect to their equilibrium positions
(gray circles). Electron spins remain parallel or anti-parallel
to B. (b) Illustration of the spin-wave twisting caused by
SOC. Bottom plane: the momentum-space motion twists the
spins with respect to their equilibrium positions (gray vec-
tors). A z-spin-current parallel to q0 appears. Top plane:
the spins now evolve in a moving wavelike reference frame
(highlighted by the blue shading). Consequently, the spin
waves are twisted with a phase q0 · r (see text). (c–e) Elec-
tronic Raman spectra obtained by varying the momentum q
for (c&d) ϕ = π/4, B = ±2T and (e) ϕ = 3π/4, B = 2T .
The low-energy Raman line, sharply peaked, is a signature of
the spin wave. The smoother structure at higher energy is
due to single-particle excitations. The spectrum highlighted
in red for each case shows the spin-wave maximum energy.

then decreases, until it merges with the single-particle
continuum where Landau damping occurs.

Spin-orbit twisted spin waves. A 2DEG electron occu-
pying the quantum state |k〉 is subject to a k-dependent
spin-orbit magnetic field Bso(k) [see Fig. 1(b)]. Hence,
one might expect that the spin-wave dynamics (stiffness
and damping) should be affected by the set of individ-
ual SO fields. However, we will show that the collective
behavior is influenced in a rather simple way as a conse-
quence of symmetries embedded in the SOC.

The Hamiltonian of our 2DEG has two parts: Ĥ =
Ĥ0 + ĤSO. Ĥ0 describes a translationally invariant in-
teracting 2DEG subject to a constant magnetic field ap-
plied in the plane of the quantum well and without Lan-
dau orbital quantization [18, 21]. The Coulomb inter-
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Figure 2. (a&b) Lifting of the spin-wave chiral degeneracy by
a momentum shift of the dispersions due to SOC. Momentum
dispersion of energy (a) and linewidth (b) of the spin wave for
ϕ = π/4 and B = ±2 T. Dispersions are shifted by qs from
q = 0 with a mirror symmetry when inverting the magnetic
field. (c) (•) represents the qs dependence with ϕ, which
has been extracted from the dispersions measured for ϕ ∈
[−π

4
, 3π

2
]. The red curve is a fit of qs(ϕ) to the x component of

−q0 given by Eq. (3). (d&e) Universal linear relation between
the linewidth and the energy of the spin wave: (η − η0)/η2 is

plotted as a function of 2m∗

~2 (~ω − Z)/Ssw, symbols of the
same color are for a given in-plane angle ϕ, but for various
values of q. (d) B = +1 T, open (solid) symbols correspond
to spin waves with wavevector q directed towards −ex (+ex).
(e) B = +2 T, solid symbols correspond, here, to the two
extremal angles ϕ = π

4
, 3π

4
, open symbols are for other angles.

action in Ĥ0 leads to the formation of spin waves [21],
which propagate with the dispersion of Eq. (1). ĤSO

is the Hamiltonian due to SOC in the conduction band:
ĤSO =

∑
iBso(ki) · σ̂i couples the in-plane component of

the i-th electronic spin σ̂i with its momentum ki.
SOC arises from two broken inversion symmetries of

the quantum well [27]: the Rashba contribution [28],
of strength α, due to the asymmetric doping along the
growth direction [001], and the Dresselhaus contribution
[29], of strength β, due to the asymmetry of the CdTe
crystalline unit cell. The Rashba part in Bso(k) lies in
the 2DEG plane perpendicular to the electron momen-
tum k; the Dresselhaus part has mirror symmetry with
respect to the crystalline axis [100]. The resulting SOC
field is given by:

Bso(k) = α k×w + β[(k ·u)u − (k ·v)v], (2)

where the unit vectors u, v and w are along the crystal-
lographic directions [100], [010], and [001].

When expressing ĤSO in the in-plane coordinates
(x, z), where B = Bez and q = qex, as sketched in

Fig. 1(a), we find, to linear order in k: ĤSO = −~q0 · Ĵz+
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~q1 · Ĵx. Here, Ĵν = 1
2m∗

∑
i p̂iσ̂ν,i is the homogenous

spin current of the ν-spin component. The change of
coordinates naturally introduces the two wavevectors q0

and q1, where:

q{ 0
1}

=
2m∗

~2
[(α± β sin 2ϕ) e{ x

z } + β cos 2ϕe{ z
x}]. (3)

Note, first, that the second term in ĤSO couples to
the transverse spin components and thus only produces
energy corrections to second order in SOC [18]. We will
therefore neglect it as we limit ourselves to first order
considerations. By contrast, the first term in ĤSO cou-
ples to the longitudinal spin components σ̂z,i. Its effect
can be similar to a magnetic field along z, but activated
by the electron motion embedded in the spin-wave oscilla-
tion. We can thus infer that its strength will be periodic
in real space: the spin wave creates a q periodicity of
the spin phases resulting in a q periodicity of Ĵz, which
in turn twists the spins periodically in the direction of
q0. A positive feedback occurs, leading to the simple ad-
dition of spatial phase changes q + q0 in the spin-wave
dispersions as depicted in Fig. 1(b).

We can rigorously demonstrate this “spin-orbit twist”
effect by a gauge transformation of Ĥ with the twist op-
erator Û = e−i

∑
i q0 · ri σ̂z,i/2 [30]. This transforms the

momentum operator of the i-th electron into Û p̂iÛ
† =

p̂i + ~q0σ̂z,i/2, and Ĥ becomes ÛĤÛ† = Ĥ0 , where we
neglected terms in second order of the SOC [18]. Hence,
the twist operator restores the spin-rotational invariance
[31, 32]. Û imprints a spin rotation along z with a spa-
tially dependent angle which grows at a rate q0 along
the q0 direction. Consequently, the spin-wave operator
is transformed into Û Ŝ+,qÛ

† = Ŝ+,q+q0 .
The final result is that, to first order in SOC, the spin-

wave operators are unchanged, apart from shifting the
spin-wave momentum by q0. The spin-wave equation of
motion in the presence of SOC reads:

i~
d

dt
Ŝ+,q =

[
Ŝ+,q, Ĥ

]
= Û†

[
Ŝ+,q+q0

, Ĥ0

]
Û . (4)

This equation leads to a spin-wave dispersion and damp-
ing shifted by a wavevector −q0, while protecting the
spin-wave stiffness which remains unaffected by SOC:

~ωSO
sw (q) = Z + Ssw

~2

2m∗
|q + q0|2 + iηq+q0 . (5)

Equations (4) and (5) can be interpreted as follows:
the gauge transformation performed above is equivalent
to a quantum change of reference frame in the spin space,
the latter depending on instantaneous positions of elec-
trons. The new reference frame for the spins is then
moving, following the electron oscillation in real space
[see Fig. 1(b)]. In this new spin frame, the spin wave
experiences a constant and uniform magnetic field: its

propagation is determined by Ĥ0 only. This effect is sim-
ilar to the drag of optical or acoustic waves in a moving
medium [33, 34], except that here the moving medium
refers to the spin space.

Spin-orbit twist effect evidenced by Raman spectra. To
measure the spin-wave dispersions of Eq. (5) we em-
ploy electronic Raman scattering, which transfers a well-
controlled momentum q = κi,‖ − κs,‖ ' 2κi sin θex to
the spin excitations, where κi and κs are the momenta of
the linearly cross-polarized incoming and scattered pho-
tons, respectively. The experimental geometry shown in
Fig. 1(a) defines the incidence angle θ and the in-plane
azimuthal angle ϕ, which control the magnitude and di-
rection of q, respectively. The in-plane orientation of the
magnetic field B = Bez is adjusted so that it is always
perpendicular to q = qex. q and B are at the angle ϕ
with, respectively, the [100] and [010] crystalline direc-
tions. The accurate ϕ control of q is crucial to evidence
the SOC effects on spin waves.

Figures 1(c–e) show a series of electronic Raman spec-
tra, obtained at fixed ϕ = π/4 and B = ±2 T, and
for transferred momenta q between ∓2.5 and ±3.8 µm−1

[the positive sign is defined by the orientation of q in
Fig. 1(a)]. The most prominent feature in both series of
spectra is the strong spin-wave Raman line. However,
in contrast with the spin-wave dispersion relation (1),
which is valid without SOC, we observe that for ϕ = π/4
and B = +2 T, the highest spin-wave energy and the
minimum linewidth are not at q = 0, but shifted to
q = qs ' 1.7 µm−1 (see red spectrum). When inverting
B to −2 T, the series looks very similar after inversion of
the momentum axis. The extrema occur symmetrically,
at qs ' −1.7 µm−1.

These observations are illustrated in Figs. 2(a-b),
which present the energy and linewidth dispersions as
a function of q, at ϕ = π/4, for both directions of the
magnetic field. Since the linewidth η of the spin-wave Ra-
man line yields the damping rate ηq of Eq. (1), Figs. 2(a-
b) demonstrate that the SOC lifts the chiral degeneracy
of the spin-wave energy as well as of the damping rate:
the spin-wave energy and linewidth dispersions are both
asymmetric and invariant under simultaneous inversion
of the directions of the magnetic field and of the wavevec-
tor.

Figure 1(e) shows a series of electronic Raman spec-
tra obtained at B = +2 T, but for a different azimuthal
angle ϕ = 3π/4. The momentum shift now changes
to qs ' −0.5 µm−1, which suggests a modulation of
qs with ϕ. Indeed, Fig. 2(c) represents the experimen-
tal qs extracted from the dispersions measured for var-
ious in-plane angles ϕ. qs matches the ex component
of −q0. The π-periodicity of the qs(ϕ) modulation is
in complete agreement with the C2v in-plane symme-
try of the SOC arising from the superposition of the
Rashba and Dresselhaus contributions and leading to the
expression of q0 given in Eq. (3). Fitting the experi-
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mental values with Eq. (3) yields the Rashba and Dres-
selhaus constants α and β with high accuracy: we find
α = 1.83± 0.08 meVÅ and β = 3.79± 0.11 meVÅ. To
summarize, the quadratic energy and damping disper-
sions are both shifted by a qs modulated with ϕ, while
the spin-wave stiffness Ssw ' −27.5 ± 2.6 and damping
η2 ' 9.9± 2.0 µeVµm2 remain protected.

Chirality in spin-wave energy dispersions and chiral
damping have been observed in Fe monolayers [7]. Chi-
ral damping dispersions have been observed in Pt/Co/Ni
films [13]. However, Eqs. (1) and (5) show a universal lin-
ear relation between damping rate and angular frequency
of the spin wave, independent of SOC, which reads:

η = η̃0 +
2m∗

~
η2
Ssw

ω (6)

where ω stands for either ωsw or ωSO
sw , and η̃0 = η0 −

2mZ/~2Ssw. This universal linear behavior is demon-
strated in Figs. 2(d-e) where the linewidth has been plot-
ted as a function of energy for B = +1 T and B = +2 T
and various in-plane angles. The chirality and anisotropy
do not appear anymore: +ex and −ex waves, for every
ϕ, fall on the same line, which shows that the relation
between spin-wave energy and damping does not depend
on SOC but only on the Coulomb and kinetic interactions
present in Ĥ0. This confirms the existence of spin-orbit
twisted spin waves predicted in Eq. (5). Morever, the
linear relation of Figs. 2(d-e) was not found in Ref. 13.
This unambiguously establishes the new physics under-
lying the spin-orbit twisted spin waves.

Spin-wave group velocity control. We can now focus
on the group velocity vector given by vg = ∇qωsw. In
the absence of SOC, vg,q = Ssw~q/m∗ is radial and
vanishes at zero momentum. In the presence of SOC,
Eq. (5) yields vg,q = Ssw~(q + q0)/m∗. Except for
ϕ = π/4 (mod π/2), vg,q has acquired a non-radial
component. The radial component vanishes along the
q = −q0x curve. At q = 0, the group velocity is no longer
zero and depends on the respective directions of the mag-
netization and crystalline axis: vg,q=0 = Ssw~q0/m

∗.
Since q0 depends on the magnetization direction and

on the strength of the Rashba and Dresselhaus con-
stants [Eq. (3)], the spin-orbit twist introduces a new
way to control the spin-wave propagation direction, e.g.,
by varying the density by optical gating [18]. With this
technique, the electron density can be reproducibly re-
duced by up to a factor of 2 in our sample. We set
B = 2 T, and for each density we repeat the procedure
exposed in Fig. 2 to extract the quantities Ssw, α and
β and evaluate the group velocity. Respective variations
of the spin-wave stiffness, α and β with the density are
given in the supplementary information [18].

The group velocity control is summarized in Fig. 3,
for the specific case of ϕ = 3π/4. The momentum
shift qs (red dots) is plotted as it varies with the den-

Figure 3. Optical gating of the spin-wave group velocity. The
group velocity vector changes for ϕ = 3π/4 and B = 2 T
as a function of momentum and electron density (note that
the group velocity is purely longitudinal at ϕ = 3π/4): a
spin wave with momentum q = −0.5 µm−1 experiences an
inversion of its group velocity when the density is changed
from 1.8 to 2.7× 1011 cm−2. The red dots, where q = qs,
indicate a standing spin wave.

sity n2D. Standing spin waves correspond to the curve
q = qs(n2D). When departing from this curve, the
group velocity acquires a positive or negative compo-
nent, which for that specific angle (ϕ = 3π/4) is al-
ways collinear with q. For example, at fixed momen-
tum transfer q = −0.6 µm−1, the spin wave propagates
upward when n2D = 2.7× 1011 cm−2 and downward for
n2D = 1.5× 1011 cm−2. This illustrates the control of
the spin-wave propagation direction which can be ob-
tained via density control by optical gating (as shown
here) or by electrical gating.

In conclusion, we showed that the interplay of SOC
and Coulomb interaction in itinerant electronic systems
profoundly affects the spin-wave dynamics. Our first-
principles predictions and related experimental confirma-
tion demonstrate that, to leading order in the Rashba
and Dresselhaus field strengths, the dispersions in en-
ergy and damping rate are both simply rigidly shifted by
a wavevector q0 without any change of the universal rela-
tion between damping and energy. The rigid shift is simi-
lar to that of spin waves subject to Dzyaloshinskii-Moriya
interaction (well suited for localized spins). However,
the conservation of the universal relation is new. This
leads us to introduce the concept of spin-orbit twisted
spin-waves. Their group velocity acquires a non-radial
component and can be controlled by the strength of the
SOC. This effect opens up opportunities to control the
propagation direction of spin waves by manipulating the
SOC field strengths, e.g., by gating the sample. It can be
exploited in spintronics to build, e.g., spin-wave routing
devices or spin-wave lenses with patterning of the SOC.
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[22] J. Gómez, F. Perez, E. M. Hankiewicz, B. Jusserand,

G. Karczewski, and T. Wojtowicz, Phys. Rev. B 81,
100403(R) (2010).

[23] F. Perez, J. Cibert, M. Vladimirova, and D. Scalbert,
Phys. Rev. B 83, 075311 (2011).

[24] m∗ = 0.105me, where me is the vacuum electron mass.
[25] I. D’Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000).
[42] E. M. Hankiewicz, G. Vignale, and Y. Tserkovnyak,

Phys. Rev. B 78, 020404 (2008).
[27] R. Winkler, Spin-Orbit Coupling Effects in Two-

Dimensional Electron and Hole Systems (Springer,
Berlin, 2003).

[28] Y. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[29] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[30] A. Auerbach, Interacting Electrons and Quantum Mag-

netism, Graduate Texts in Contemporary Physics
(Springer, New York, 1994).

[31] M. S. Shikakhwa, S. Turgut, and N. K. Pak, J. Phys. A:
Math. Theor. 45, 105305 (2012).

[32] B. A. Bernevig, J. Orenstein, and S.C. Zhang, Phys.
Rev. Lett. 97, 236601 (2006).

[33] A. Fresnel, Ann. Chim. Phys. 9, 57 (1818).
[34] H. Fizeau, C. R. Acad. Sci. (Paris) 33, 349 (1851).
[35] G. Giuliani and G. Vignale, Quantum theory of the

electron liquid (Cambridge University Press, Cambridge,
2005).

[36] A. K. Rajagopal, Phys. Rev. B 17, 2980 (1978).
[37] C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B.

Bachelet, Phys. Rev. Lett. 88, 256601 (2002).
[38] S. De Palo, M. Botti, S. Moroni, and G. Senatore, Phys.

Rev. Lett. 94, 226405 (2005).
[39] S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth,

and D. D. Awschalom, Phys. Rev. Lett. 77, 2814 (1996).
[40] Z. Ben Cheikh, S. Cronenberger, M. Vladimirova,

D. Scalbert, F. Perez, and T. Wojtowicz, Phys. Rev.
B 88, 201306 (2013).

[41] T. L. Schmidt, A. Imambekov, and L. I. Glazman, Phys.
Rev. B 82, 245104 (2010).

[42] E. M. Hankiewicz, G. Vignale, and Y. Tserkovnyak,
Phys. Rev. B 78, 020404 (2008).

[43] A. Chaves, A. Penna, J. Worlock, G. Weimann, and
W. Schlapp, Surface Science 170, 618 (1986).

[44] D. Richards, G. Fasol, and K. Ploog, Applied Physics
Letters 57, 1099 (1990).

[45] C. Aku-Leh, F. Perez, B. Jusserand, D. Richards, W. Pa-
cuski, P. Kossacki, M. Menant, and G. Karczewski, Phys.
Rev. B 76, 155416 (2007)
.


