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The rich variety of iron-based superconductors and their complex electronic structure lead to a wide range
of possibilities for gap symmetry and pairing components. Here we solve in the two-Fe Brillouin zone the
full frequency-dependent linearized Eliashberg equations to investigate spin-fluctuations mediated Cooper pair-
ing for LiFeAs . The magnetic excitations are calculated with the random phase approximation on a correlated
electronic structure obtained with density functional theory and dynamical mean field theory. The interaction be-
tween electrons through Hund’s coupling promotes both the intra-orbital dxz(yz) and the inter-orbital magnetic
susceptibility. As a consequence, the leading pairing channel, conventional s+−, acquires sizeable inter-orbital
dxy − dxz(yz) singlet pairing with odd parity under glide-plane symmetry. The combination of intra- and inter-
orbital components makes the results consistent with available experiments on the angular dependence of the
gaps observed on the different Fermi surfaces.

PACS numbers: 74.20.Pq, 74.70.Xa, 74.20.Rp

LiFeAs is a stoichiometric superconductor with supercon-
ducting Tc ' 18 K and no magnetic ordering. [1] De-
spite rather poor nesting [2–5], recent quasiparticle interfer-
ence experiments identify the antiferromagnetic (AF) spin-
fluctuation mediated mechanism as the predominant pairing
interaction. [6] ARPES and quasiparticle-scattering interfer-
ence measurements below Tc show that the superconducting
(SC) gaps of LiFeAs are nodeless, with a Fermi surface (FS)
dependence and a sizable variation along each FS. [2, 7, 8]
Polarized neutron diffraction as a function of temperature has
shown a suppression of the local spin susceptibility in the SC
phase, suggesting singlet pairing. [9, 10]

In theoretical studies, the AF spin-fluctuation mediated
pairing [11–14] and a combination of AF spin-fluctuation and
orbital fluctuation mediated by phonons have been investi-
gated. [15, 16] However, all studies are performed in the one-
iron unit cell with various unfolding algorithms used to em-
bed the correct symmetry. [17–21] This procedure is exact
only for computing in-plane pairing. In addition, the SC gap
equation is usually projected on the FS, the pairing interac-
tion is symmetrized, [11] and the resulting equation is always
solved in the BCS approximation. All of the above simplifi-
cations must be questioned before we can be confident of the
results. Furthermore, for Fe-based superconductors (FeSCs)
with a non-symmorphic point-group, [22] anti-symmetry of
fermions does not place a constraint on the parity of the SC
pairing channel. [23, 24] This allows for even-parity dxz−dyz
inter-orbital pairing [25], or for dxy − dxz(yz) odd parity spin
singlet pairing when there is orbital weight at the Fermi level
from orbitals with different in-plane mirror reflection symme-
try [26].

Hence, here we revisit spin-fluctuation mediated pairing
by considering both Fe-3d and As-4p orbitals in the two-Fe
unit cell. We solve the linearized Eliashberg equations [27]
in the two-Fe Brillouin Zone (BZ) to investigate SC pairing

and gap symmetry. Since there is increasing evidence that
superconductivity does not emerge as a FS instability [40],
we work in the orbital representation instead of projecting the
gap equation on the FSs. Our results show that in the lead-
ing channel, with the conventional s+− symmetry, odd parity
inter-orbital pairing accompanies the usual intra-orbital pair-
ing and increases with interactions, in particular with Hund’s
coupling. In contrast to previous studies [8, 11–13] we find
that this state can reproduce the angular dependence of the
gap on the electron pockets.

Electronic structure In LiFeAs, the bandwidth observed
in ARPES is narrower than in LDA calculations and there are
experimental evidences of long-lived magnetic moments. [9]
This indicates the importance of correlations, so we em-
ploy the LDA+DMFT method to obtain the electronic struc-
ture. [41–43] Fig. 1 illustrates the LDA+DMFT partial spec-
tral weight, All(k, 0), of Fe t2g- orbitals dxy and dxz,yz on
the FSs of LiFeAs. [44] The Fe eg orbitals dz2 and dx2−y2 hy-
bridize with As-p orbitals and contribute to the spectral weight
lying above and below the Fermi level. The FS consists of
three hole-like and two electron-like sheets around the center
and corners of the BZ respectively. The two inner hole pock-
ets are predominantly composed from dxz and dyz orbitals.
The smallest hole pocket crosses the Fermi level only in close
vicinity to the Γ point. It hybridizes with the dz2 orbital near
Z point and is closed there, while remaining 2D away from
this point. The middle pocket has moderate kz dispersion.
The large hole-like Fermi surface originates purely from in-
plane dxy orbitals and therefore is 2D without noticeable kz
dispersion. The electron pockets are made from an admixture
of dxy , dxz and dyz orbitals. The electron pockets intersect at
small kz and their order flips, i.e., the inner pocket at kz = 0
is the outer pocket at kz = π/c.

Comparison to LDA, [27] shows that in LDA+DMFT: (a)
The two inner hole pockets shrink while the outer one ex-
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FIG. 1. (Color online) Partial spectral weight, All(k, 0), of Fe
t2g- orbitals on the FS in the kx-ky plane with kz = 0 (left), and
kz = π/c (right) obtained from the LDA+DMFT calculation. Here
the dxy , dxz , and dyz orbitals are illustrated by green, blue and red
colors, respectively. The α1 pocket crosses the Fermi level only in
close vicinity to the Γ point (not visible on this scale).

pands. (b) The middle hole pocket also deforms and takes
on a butterfly shape at small kz . [45] (c) At finite kz , the outer
hole-pocket acquires some dxz and dyz orbital weight in the
direction of the A point. (d) The shrinkage of the two inner
hole pockets leads to larger patches where dxz and dyz orbitals
mix on these pockets. (e) The electron pockets are moderately
expanded and they become closer to each other. [27]

The t2g orbitals are the most strongly correlated [43, 45] as
is apparent from the mass enhancements m∗/mLDA = 2.0,
1.85, 3.13 and 2.7 for dz2 , dx2−y2 , dxy , and dxz,yz orbitals,
respectively. The dxy orbital has the strongest mass enhance-
ment and shortest quasi-particle lifetime.

Effective pairing interaction A SC instability in the sin-
glet channel occurs when the corresponding pairing suscep-
tibility diverges as one lowers temperature. A divergent sus-
ceptibility signals the appearance of a pole in the correspond-
ing reducible complex vertex function, which describes all
scattering processes of two propagating particles. Using the
Bethe-Salpeter equation, the condition for an instability is that
an eignvalue of the matrix −Γirr,sχ0

pp becomes unity. Here
Γirr,s is the irreducible vertex function (effective pairing in-
teraction) in the singlet channel, and χ0

pp is the bare suscepti-
bility in the particle-particle (p-p) channel. [27, 46, 47]

The density/magnetic fluctuations contribute to the pair-
ing interaction by entering the ladder vertex defined by
Πph ≡ −(1/2)Γirr,dχd

phΓirr,d + (3/2)Γirr,mχm
phΓirr,m

where χ
m(d)
ph and Γirr,m(d) denote respectively the dressed

susceptibility and the irreducible vertex function in the mag-
netic (density) channel. [27] These vertices can be calculated
in the DMFT approximation. [48] However, such a calculation
is prohibitively difficult for multiorbital systems at the low
temperatures necessary to study superconductivity, [27] hence
here we employ the random phase approximation (RPA). [49]
In RPA, the irreducible vertex function is replaced by a static
effective vertex which is parametrized by the screened intra-
orbital Hubbard interaction, Us, and the Hund’s coupling
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FIG. 2. (Color online) Several components of the pairing interaction
of LiFeAs at kBT = 0.01 eV in the particle-hole channel. There
are two sets of screened interaction parameters yielding the same
magnetic Stoner factor, namely Js = 0.1Us, Us = 2.4 eV on the top
and Js = 0.3Us, Us = 1.68 eV on the bottom. The legend for the
color coding is spread over both figures.

Js. [16, 27, 50, 51] The inter-orbital interaction and pair hop-
ping are determined assuming spin-rotational symmetry. Note
that even though the static effective vertices Us and Js capture
Kanamori-Brückner screening effects, they do not fully cap-
ture the dynamics of screening. In particular, the RPA treat-
ment misses the fact that at high fermionic frequencies one
should recover the bare interactions.

Fig. 2 shows the pairing interaction, Πph, at kBT =
0.01 eV for two sets of screened interaction parameters that
yield the same magnetic Stoner factor. [52] Here we only
present the intra-sublattice components because the inter-
sublattice components are relatively small. In what follows,
we focus on the Fe-1 and Fe-2 (on A and B sublattices re-
spectively) t2g orbitals: dxy will be referred as 2 (7) and dxz
and dyz orbitals as 4 (9) and 5 (10). The dominant effec-
tive pairing interaction components are repulsive. As can be
seen in Fig. 2(a), due to better nesting, the dxy intra-orbital
(22; 22) pairing vertex is dominant and the dxz(yz) intra-
orbital (44; 44) is sub-dominant, yet on average it is larger
than inter-orbital vertices (22; 44) and (44; 55).

However, at larger Js/Us the situation changes. For a
fixed Stoner factor (proximity to magnetic transition) upon in-
creasing the Js/Us ratio from Fig. 2(a) to Fig. 2(b), the dxy
intra-orbital pairing component decreases while the dxz(yz)
intra-orbital components and the inter-orbital components in-
crease slightly. This shows that a higher Js, through cou-
pling to the more correlated dxy orbital, compensates the
decrease of spin susceptibility expected from the lower Us
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FIG. 3. (Color online) Real part of the several intra-sublattice com-
ponents of the generalized particle-particle bare susceptibility at the
lowest fermionic/bosonic Matsubara frequency.

(Fig. 2(b)). [27] Furthermore, since Hund’s coupling corre-
lates different orbitals, the inter-orbital components increase,
becoming comparable with the dxz(yz) intra-orbital compo-
nents. The dxy intra-orbital vertex becomes less dominant at
larger Js/Us. [53] This behavior of the magnetic susceptibil-
ity reflects itself directly in the pairing interaction (see sup-
plemental material for the dressed susceptibilities in magnetic
and charge channels).

Bare particle-particle susceptibility The generalized bare
susceptibility in the p-p channel also enters the gap equa-
tion. [27] Fig. 3 shows the real part of several compo-
nents of the generalized p-p bare susceptibility at the lowest
fermionic/bosonic frequencies. The intra-orbital components
are purely real. Both real and imaginary parts (see SM) show
peaks at the position of FSs. For example, going from the Γ to
the X point in the top panel, the three peaks are respectively
related to the inner hole pocket with dxz weight in close prox-
imity to Γ, the middle pocket with dyz weight and the outer
pocket with dxy weight. The peak heights are directly pro-
portional to the corresponding orbital weight on the FSs and
inversely proportional to the Fermi velocity. The peak widths
are induced by correlation effects, implying that electrons near
FSs may contribute to the Cooper pairing. In a non-interacting
system the peak widths go to zero at zero temperature. [54]
The larger 22; 22 peak component in the M − Γ direction,
compared with the M − X(Y ) direction, indicates that the
SC gap on the outer electron pocket is larger in the M − Γ
direction.

In the BCS approximation, only real parts survive for the
components considered here, due to a summation over Mat-
subara frequencies. In this case, the inter-orbital pairing is

suppressed. Including the imaginary part in the full gap equa-
tion changes this trend. The imaginary parts of the inter-
orbital components change sign between corner and center of
the BZ. They have some symmetries that transfer to the gap
function: (i) They are odd under exchange of orbital indices,
(ii) There is also a π phase difference between the two Fe ions
(see SM).

SC pairing symmetry in LDA+DMFT+RPA The leading
pairing channel is a channel with dominant dxy , dxz and
dyz intra-orbital pairing. In our gauge, the gap function
components have both real and imaginary part which sat-
isfy Re∆

AA(BB)
ll = −Im∆

AA(BB)
ll . All intra-orbital com-

ponents change sign between center and corner of the BZ
(see Fig. 4), as expected in conventional s+− pairing. The
dxy intra-orbital component dominates, but has a small value
on the γ pocket. The dxz and dyz intra-orbital components
are out of phase, i.e. ∆

AA(BB)
55 ' −∆

AA(BB)
44 (not shown).

They take large values on the α1,2 hole pockets. The inter-
sublattice components are much smaller than intra-sublattice
ones, ∆AA(BB) >> ∆AB(BA). The largest inter-sublattice
component is ∆AB

22 . In orbital basis, the gap functions do
not change much between kz = 0 and kz = π/c, hence we
present only kz = 0 results.

In agreement with the above pairing-interaction analy-
sis, upon increasing Js/Us the dxz/yz intra-orbital pairing
strengthen. Furthermore, the dxy-dxz and dxy-dyz inter-
orbital pairings increase. Although they vary on a smaller in-
terval, they are comparable with the dxz/yz intra-orbital com-
ponents on the electron FSs (compare Fig. 4 top and bottom
panels).

We verify that the gap function components of the lead-
ing channel satisfy the relations ∆

AA(BB)
l1l2

(k, iωm) =

∆
BB(AA)
l1l2

(−k, iωm), and ∆
AA(BB)
l1l2

(k, iωm) =

∆
AA(BB)
l2l1

(−k,−iωm). [56] The first relation says that
the superconducting state does not break parity: In
LiFeAs the inversion center is located in the middle
of Fe-Fe link. Under parity operation the sublattice A
maps to sublattice B and vice versa and k → −k. The
components of the gap function also satisfy the rela-
tion ∆

AA(BB)
l1l2

(kx, ky, iωm) = pl1pl2∆
BB(AA)
l1l2

(kx, ky, iωm),
where pl denotes the parity of orbital l with respect to in-plane
mirror reflection symmetry. [57] This symmetry is defined
by in-plane mirror reflection followed by a half-translation,
expressed in units of the two-Fe unit cell, {σz| 12

1
20}. Thus,

the intra-orbital components on the two Fe are equal, while
the inter-orbital components between one even-parity (dxy)
and one odd-parity (dxz , dyz) orbital, change sign between
two Fe-ions. These components are the parity-odd under
{σz| 12

1
20} spin singlet pairings. [26] Furthermore, as can

be seen from Fig. 4, the in-plane intra-orbital components
satisfy ∆

AA(BB)
ll (kx, ky) = ∆

AA(BB)
ll (−kx,−ky), while

the inter-orbital components between dxy and dxz(yz)

satisfy ∆
AA(BB)
l1l2

(kx, ky) = −∆
AA(BB)
l1l2

(−kx, ky) or

∆
AA(BB)
l1l2

(kx, ky) = −∆
AA(BB)
l1l2

(kx,−ky) .
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FIG. 4. (Color online) Top panels: The real part of the dxy (left) and
dxz (right) in-plane intra-orbital components of the SC gap function
at the lowest Matsubara frequency with largest eigenvalue in the or-
bital representation for Js/Us = 0.3 and kBT = 0.01 eV. The imag-
inary part can be obtained from Im∆ll = −Re∆ll. Bottom panels:
The real/imaginary part of the inter-orbital components of the SC
gap function on sublatticeA in the orbital representation, ∆AA

l1l2
. The

corresponding components on sublattice B are out of phase with the
displayed components, i.e. ∆BB

l1l2
= −∆AA

l1l2
. The lines show one

quarter of the Fermi surfaces.

Our calculations show that the gap symmetry of the lead-
ing channel is conventional s+−. Indeed, although there is a
phase difference between the dxz and dyz components of the
gap function in the orbital basis, this phase difference is re-
moved by another phase difference that arises when going to
the Bloch basis corresponding to the α1,2 pockets. [27] In the
subleading pairing channel, the dxy intra-orbital component
is in phase with dyz and out of phase with dxz intra-orbital
components, which in the band representation gives s+− gap
symmetry with a sign change between α1,2 and γ pockets
and between electron pockets and accidental nodes on the β2
pocket. [14]

Finally, we comment on the SC gap magnitude on different
FSs. [58] Diagonalizing the Bogoliubov quasi-particle Hamil-
tonian leads to a gap magnitude which has predominant cos 4θ
angular dependence on all pockets, as can be seen from Fig. 5.
The angular dependence of the gap on the γ and of the aver-
age gap on the β1,2 pockets are consistent with ARPES data:
The gap is maximum at θ = 0, π/2 and decreases when ap-
proaching θ = π/4 (the direction toward M -point) on the γ
pocket, while the average gap is maximum at θ = π/4 (di-
rection toward Γ-point) on the β pockets and decreases when
approaching θ = 0, π/2 where the two pockets cross. The
gap on the β2 electron pocket is increased in the direction of
Γ-point due to a larger dxy orbital content with a large pair-
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FIG. 5. (Color online) For Js/Us = 0.3, the SC gap magnitude (in
units of the average gap magnitude on the α1 pocket) as a function
of the angle θ measured at the Γ and M points with respect to the x
axis for kz = 0 FSs.

ing amplitude (see Fig. 4, upper panels). The gap on the β1
electron pocket also shows a local enhancement at θ = π/4.
Due to interchange of electron pockets as a function of kz , the
gap on the inner pocket becomes larger than that on the outer
pocket at a finite kz . Hence, for these pockets, a direct com-
parison with ARPES data has to take averaging over a range
of kz into account. [59] The ratio between the average gap
magnitude on β pockets and γ pocket is also consistent with
ARPES results [7, 8]. However, the gap magnitude on the α
pockets is not the largest. This discrepancy with ARPES re-
sults may come from the fact that ARPES is performed at very
low temperature while the linearized Eliashberg gap equation
is valid at temperatures infinitesimally close to the transition
temperature. The tunneling spectroscopy study of LiFeAs has
shown a temperature evolution of superconductivity. [60] A
calculation at a lower temperature shows that the sharp peaks
in the 44 and 55 bare paring susceptibilities, Fig. 3(a), grow
faster than the wider peak for 22. This leads to an increase of
the gap on the α pockets at lower temperatures.

Conclusion Solving the full linearized Eliashberg gap
equation with both real and imaginary parts and including cor-
relations in the LDA+DMFT framework leads to a detailed de-
scription of the leading pairing channel in LiFeAs. Account-
ing for correlations in the spin fluctuation approach allows to
correctly capture not only nesting effects but also Fe-d orbital
fluctuating moments with orbitally dependent dynamics. Al-
though the intra-orbital dxy spin susceptibility is dominant,
Hund’s coupling between orbitals on individual Fe atoms pro-
motes both the intra-orbital dxz(yz) component and the inter-
orbital dxy-dxz(yz) components of the magnetic susceptibil-
ity. As a consequence, the leading paring channel, conven-
tional s+−, acquires inter-orbital singlet pairing component
with odd parity under glide-plane symmetry. This type of pair-
ing may also be realized in other iron-based superconductors.
Antiphase s+− pairing [14] is sub-leading. The combination
of inter-orbital odd-parity and intra-orbital even parity singlet
pairing leads to a description of the angle-dependence and of
the relative magnitudes of the gap on the β and γ Fermi sur-
faces that is consistent with state of the art experiments.
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(2010).
[51] H. Miyahara, R. Arita, and H. Ikeda, Phys. Rev. B 87, 045113

(2013).
[52] The distance from magnetic and charge/orbital fluctuation criti-

cality is determined by the corresponding (dimensionless) mag-
netic (density) Stoner factor αm(d)

q , which is the largest eigen-
value of Γirr,mχ0

ph(q, iνn = 0) (−Γirr,dχ0
ph(q, iνn = 0)).

[53] The 22; 44 (44; 55) components in the magnetic and charge sus-
ceptibilities in the p-h channel are related to the 24; 42 and

http://dx.doi.org/10.1103/PhysRevB.78.060505
http://dx.doi.org/10.1126/science.1218726
http://dx.doi.org/ 10.1103/PhysRevLett.105.067002
http://dx.doi.org/ 10.1103/PhysRevLett.105.067002
http://dx.doi.org/ 10.1103/PhysRevLett.109.177001
http://dx.doi.org/10.1103/PhysRevB.83.060501
http://dx.doi.org/ 10.1038/nphys3187
http://dx.doi.org/ 10.1103/PhysRevLett.108.037002
http://dx.doi.org/ 10.1103/PhysRevLett.108.037002
http://dx.doi.org/10.3390/sym4010251
http://dx.doi.org/ 10.1103/PhysRevB.88.060401
http://dx.doi.org/ 10.1103/PhysRevB.88.060401
http://dx.doi.org/ 10.1103/PhysRevB.89.045141
http://dx.doi.org/ 10.1103/PhysRevB.88.174516
http://dx.doi.org/10.1103/PhysRevB.84.235121
http://dx.doi.org/10.1103/PhysRevB.84.235121
http://dx.doi.org/ 10.1103/PhysRevB.89.144513
http://dx.doi.org/ 10.1103/PhysRevB.89.144513
http://dx.doi.org/10.1038/nphys3116
http://dx.doi.org/ 10.1103/PhysRevB.90.035104
http://dx.doi.org/10.7566/JPSJ.83.043704
http://dx.doi.org/10.7566/JPSJ.83.043704
http://dx.doi.org/10.1103/PhysRevB.78.144517
http://dx.doi.org/10.1103/PhysRevB.80.104503
http://dx.doi.org/10.1002/andp.201000149
http://dx.doi.org/10.1103/PhysRevB.88.155125
http://stacks.iop.org/1367-2630/15/i=7/a=073006
http://dx.doi.org/10.1103/PhysRevB.88.134510
http://dx.doi.org/10.1103/PhysRevX.3.031004
http://dx.doi.org/10.1103/PhysRevB.89.045144
http://arxiv.org/abs/arXiv:1410.3554
http://dx.doi.org/10.1103/PhysRevLett.114.107002
http://stacks.iop.org/1367-2630/11/i=2/a=025016
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.86.125114
http://dx.doi.org/10.1103/PhysRevB.86.125114
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/ 10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevB.85.205106
http://dx.doi.org/10.1103/PhysRevB.85.205106
http://dx.doi.org/ 10.1038/ncomms3783
http://dx.doi.org/ 10.1038/ncomms3783
http://dx.doi.org/10.1038/srep00381
http://stacks.iop.org/0034-4885/74/i=12/a=124508
http://stacks.iop.org/0034-4885/74/i=12/a=124508
http://dx.doi.org/ 10.1143/JPSJ.79.044705
http://dx.doi.org/ 10.1143/JPSJ.79.044705
http://dx.doi.org/10.1103/PhysRevB.85.094509
http://arxiv.org/abs/arXiv:1601.05813
http://dx.doi.org/ 10.1038/ncomms7056
http://dx.doi.org/ 10.1038/ncomms7056
http://dx.doi.org/ 10.1103/PhysRevB.80.085101
http://dx.doi.org/ 10.1103/PhysRevB.80.085101
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1038/nmat3120
http://dx.doi.org/10.1103/PhysRevB.85.094505
http://dx.doi.org/10.1103/PhysRevB.85.094505
http://dx.doi.org/10.1103/PhysRevB.57.5376
http://dx.doi.org/ 10.1103/PhysRevB.86.064411
http://dx.doi.org/10.1103/PhysRevB.75.134519
http://dx.doi.org/10.1103/PhysRevB.75.134519
http://dx.doi.org/ 10.1103/PhysRevB.81.054518
http://dx.doi.org/ 10.1103/PhysRevB.81.054518
http://dx.doi.org/10.1103/PhysRevB.87.045113
http://dx.doi.org/10.1103/PhysRevB.87.045113


6

42; 42 (45; 54 and 54; 54) components of the pairing interac-
tion in the p-p channel.

[54] R. Nourafkan, Phys. Rev. B 93, 241116 (2016).
[55] See Eq.[S33] in the supplementary material [27].
[56] The combination of these relations gives ∆

AA(BB)
l1l2

(k, iωm) =

∆
BB(AA)
l2l1

(k,−iωm).
[57] The five Fe 3d orbitals can be categorized into even orbital par-

ity (d3z2 , dx2−y2 , dxy) with pl = +1 and odd orbital parity
(dxz , dyz) with pl = −1.

[58] The linearized Eliashberg gap equation only gives gap symme-
try, not gap magnitude. But to make contact with experiment
one can approximately extract the relative size of the gaps on
the different FSs. This can be done by defining a Bogoliubov
quasi-particle Hamiltonian including the real part of the self-
energy at the Fermi level in the normal part, and employing the

gap function obtained from the gap equation as an estimate of
the anomalous self-energy. [14] After diagonalizing the Bogoli-
ubov quasi-particle Hamiltonian, the gap magnitude at momen-
tum k is given by half of the difference between the smallest
positive eigenvalue and the largest negative eigenvalue. This is
the quasi-particle gap which reduces to the SC gap on the FSs.
For this calculation, the gap function on a very dense k-mesh is
required. Since the gap function is a smooth function, its mag-
nitude on a denser mesh can be obtained by spline interpolation.

[59] S. Borisenko, D. Evtushinsky, I. Morozov, S. Wurmehl, B. Bch-
ner, A. Yaresko, T. Kim, M. Hoesch, T. Wolf, and N. Zhigadlo,
“Direct observation of spin-orbit coupling in iron-based super-
conductors,” (2014), arXiv:1409.8669.

[60] P. T. Nag, R. Schlegel,D. Baumann,H.-J Grafe,R. Beck,S.
Wurmehl,B. Buchner, and C. Hess ArXiv e-prints (2015),
arXiv:1509.03431.

http://dx.doi.org/10.1103/PhysRevB.93.241116
http://arxiv.org/abs/arXiv:1409.8669
http://arxiv.org/abs/arXiv:1509.03431

