
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bosonic Analogue of Dirac Composite Fermi Liquid
David F. Mross, Jason Alicea, and Olexei I. Motrunich

Phys. Rev. Lett. 117, 136802 — Published 22 September 2016
DOI: 10.1103/PhysRevLett.117.136802

http://dx.doi.org/10.1103/PhysRevLett.117.136802


Bosonic Analogue of Dirac Composite Fermi Liquid

David F. Mross,1 Jason Alicea,1, 2 and Olexei I. Motrunich1, 2

1Department of Physics and Institute for Quantum Information and Matter,
California Institute of Technology, Pasadena, CA 91125, USA

2Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA

We introduce a particle-hole-symmetric metallic state of bosons in a magnetic field at odd-integer filling. This
state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding
2π Berry flux protected by particle-hole and discrete rotation symmetries. We also construct an alternative
particle-hole symmetric state—distinct in the presence of inversion symmetry—without Berry flux. As in the
Dirac composite Fermi liquid introduced by Son [1], breaking particle-hole symmetry recovers the familiar
Chern-Simons theory. We discuss realizations of this phase both in 2D and on bosonic topological insulator
surfaces, as well as signatures in experiments and simulations.

Introduction. The last year has seen numerous exciting de-
velopments in our understanding of electronic quantum-Hall
states that resolved long-standing puzzles regarding particle-
hole (PH) symmetry. At filling factor ν = 1

2 , electrons fill
exactly half of the available single-particle orbitals in the low-
est Landau level (LLL). Within that subspace the system en-
joys PH symmetry that is conspicuously absent in the clas-
sic Halperin-Lee-Read (HLR) theory [2–8]. There, compos-
ite fermions, obtained by attaching two flux quanta to elec-
trons that cancel the applied field on average, fill a parabolic
band and form a Fermi surface—i.e., a composite Fermi liquid
(CFL). The corresponding Lagrangian density reads

LCS =f†

[
i (D0 − iA0)− ( ~D − i ~A)2

2m∗

]
f − k

8π
εκµνaκ∂µaν ,

(1)

where f is the composite fermion field, Aµ (with µ = 0, 1, 2)
is the electromagnetic vector potential, Dµ = ∇µ − iaµ de-
notes the covariant derivative with aµ an emergent gauge field,
and k = 1 is the level of the Chern-Simons (CS) term that at-
taches flux. Despite the absence of PH symmetry, HLR theory
is remarkably successful in predicting experimental results at
and around ν = 1

2 .
To incorporate PH symmetry, Son proposed that compos-

ite fermions are Dirac particles at finite density coupled to an
emergent gauge field [1] without a CS term:

LQED3 = iΨ̄Dµγ
µΨ− k

4π
εκµνAκ∂µaν . (2)

Here Ψ and Ψ̄ = Ψ†γ0 are two-component spinors while γµ

are Dirac matrices. Equation (2) implements two important
features of the half-filled Landau level: (i) the Dirac compos-
ite fermions are neutral under Aµ [9–12] and (ii) the theory
preserves the anti-unitary PH transformation

CΨC−1 = iσ2Ψ , C(a0,~a)C−1 = (a0,−~a). (3)

References 13–20 support Son’s theory and the presence of
PH symmetry at ν = 1

2 .
These developments prompt us to revisit the CFL formed

by bosons at ν = 1, where flux attachment yields Eq. (1)

with k = 2. Importantly, bosonic integer-quantum-Hall (IQH)
states do not admit a single-particle description, which ob-
scures a precise definition of PH symmetry even when re-
stricting to the LLL. To access PH-symmetric CFLs of ν = 1
bosons, we therefore follow a two-pronged approach: First,
we study bosons at a ‘plateau transition’ [21] between a ν = 2
IQH state [22–24] and the vacuum [25, 26]. Upon fine-tuning,
the critical theory exhibits a PH symmetry analogous to the
electronic case, in addition to microscopic inversion sym-
metry. Second, we consider the surface of a particular 3D
symmetry protected topological phase (SPT) of bosons [27],
where both symmetries can be realized microscopically.

These methods suggest a natural bosonic analogue of
Eq. (2) given by

LCFL2π = Ψ†

(
iD0 (D1 + iD2)2

(D1 − iD2)2 iD0

)
Ψ

− 1

2π
εκµνAκ∂µaν . (4)

Note that the composite-fermion density is dynamically fixed
to nCF = (∂1A2 − ∂2A1)/2π. The first line of Eq. (4) also
describes electronic excitations of bilayer graphene [28]. In
the present context, composite fermions analogously exhibit a
single quadratic band touching that is protected against weak
perturbations that respect both PH symmetry C and fourfold
rotation symmetry R(π/2) (see Fig. 1). With inversion sym-
metry I instead of R(π/2), the spectrum generically splits
into two massless Dirac cones, similar to the effect of trigonal
warping in bilayer graphene [28]. At suitable doping, either
case features a single Fermi surface enclosing 2π Berry flux.

To distinguish different kinds of PH-symmetric CFLs we
adopt notation CFLkπ , where kπ is the Berry flux enclosed
in the composite-fermion Fermi surface. Thus, the fermionic
ν = 1

2 state described by LQED3
corresponds to CFLπ while

the bosonic state described by LCFL2π is CFL2π . As we will
see, an alternative C- and I-symmetric state for bosons, CFL0,
with zero Berry flux is also possible. For any CFLkπ , weak
PH symmetry breaking splits the bands, and subsequently in-
tegrating out the negative energy states generates a level-k CS
term as in LCS (i.e., no CS term for k = 0). Absent in-
version symmetry, the sharp distinction between CFL2π and
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FIG. 1. Composite-fermion band structures for CFL2π and CFL0 states with PH symmetry and varying spatial symmetries. Horizontal planes
indicate the chemical potentials of interest. (a) With four-fold rotation symmetry CFL2π exhibits a protected quadratic band touching, unlike
CFL0. (b) Breaking rotation down to inversion symmetry allows the band touching to split into two protected Dirac cones but preserves the
2π Berry flux. (c) Lifting inversion symmetry generically splits the bands, resulting in non-zero Berry curvature indicated by color (blue and
red for opposite sign). The sharp distinction between CFL2π and CFL0 then disappears. Away from degeneracy points, PH and inversion
symmetries respectively constrain the Berry curvature B at momentum k as B(k) = −B(−k) and B(k) = B(−k); the presence of both
symmetries [i.e., cases (a) and (b)] thus implies B = 0.

CFL0 disappears.
Bosons at ν = 1 as a plateau transition. Consider a sys-

tem composed of narrow strips of width d along the y direc-
tion and infinite along x; see Fig. 2(a). The boson density ρ
for adjacent strips alternates between ρ0 and 0, and a uniform
perpendicular magnetic field B = chρ0

2e yields filling factor
ν = chρ

eB = 2 for the ρ0 strips. At length scales much larger
than d we thus obtain bosons with average filling ν = 1.

σ𝑥𝑥𝑥𝑥 = 0

σ𝑥𝑥𝑥𝑥 = ⁄2𝑒𝑒2 ℎ
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FIG. 2. (a) Alternating strips of bosons at ν = 2 and ν = 0 yield
an average filling ν = 1. Edges contain a chiral charge mode and a
counter-propagating neutral mode, described by the K-matrix σx. (b)
The same edge-state network arises on the surface of a 3D bosonic
SPT with U(1)× C symmetry when the antiunitary PH-symmetry C
is broken oppositely for neighboring strips.

We require each ν = 2 strip to form a bosonic IQH state
[22–24, 29] that hosts edge states with two flavors α = ± of
charge-e bosons. Labeling the edges by integers y (cf. Fig. 2)
and corresponding bosons by by,α ∼ eiφy,α , the Lagrangian
density for the lower (odd y) and upper (even y) edges is

Ledge =
(−1)yKαα′

4π
∂xφy,α∂tφy,α′ +

u

4π
(∂xφy,α)

2
, (5)

where K = σx. Here and below α, α′ are implicitly summed.
To access 2D CFLs we allow tunneling between neighbor-

ing edges. For example, flavor-conserving tunnelings read

Lhop = wy,α

(
ei

2heB
hc dNxb†y+1,αby,α + c.c.

)
, (6)

i.e., the edge bosons by,α experience a uniform magnetic field.
Our setup preserves a microscopic inversion symmetry [29],

Iby,α(x)I−1 = b1−y,−α(−x) (inversion), (7)

that constrains the hopping amplitudes via wy,α = w−y,−α.
With translation invariance y → y+ 2, only wy=even (hopping
across vacuum) and wy=odd (hopping across IQH strips) are
independent. When they are fine-tuned to be equal, the low-
energy theory Lhop + Ledge additionally exhibits an emergent
anti-unitary PH symmetry,

Cby,αC−1 = b†y+1,α (particle-hole). (8)

This symmetry has the desired properties that it squares to
unity and relates bosons at ν to bosons at 2− ν [30].

3D boson SPT surface. Closely related physics can ap-
pear at the surface of a 3D bosonic SPT [31] with a conserved
charge that is odd under a local anti-unitary PH symmetry, i.e.,
U(1)×Clocal [30] [32]. This symmetry pins the chemical po-
tential to zero but permits an orbital magnetic field. Breaking
Clocal generates a gapped, unfractionalized surface with Hall
conductance σxy = ±e2/h. At boundaries between domains
with oppositely broken Clocal, the Hall conductance changes
by 2e2/h—implying gapless edge states described by Eq. (5).
A surface that hosts alternating ±e2/h strips of equal width
[Fig. 2(b)] breaks Clocal but retains this symmetry when com-
posed with a translation Ty by one strip width, i.e., Eq. (8)
with C = ClocalTy . Note that unlike the 2D plateau transition,
C is a microscopic symmetry on the SPT surface.

Bosonic CFLs. Both the plateau-transition and SPT-
surface realization lead us to study Ledge +Lhop. Our analysis
is facilitated by explicit duality mappings for such network
models [18] that relate SPT surfaces to quantum electrody-
namics in (2 + 1) dimensions (QED3) described by LQED3

.
(See also Refs. 13 and 33 and Refs. 25, 26, 34–36 for the
fermionic and bosonic cases, respectively, and Refs. 37–39 for
recent developments.) The dual composite-fermion density is
proportional to the physical magnetic field B, while the num-
ber of flavors Nf depends on the statistics of the microscopic
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FIG. 3. (a) Massless Dirac band structure for ‘pure’ Nf = 2
QED3 that is dual to the bosonic models studied here (shown with
different velocities to emphasize Nf = 2). Magnetic field for the
bosons maps to a non-zero composite fermion density that yields two
Fermi surfaces. (b) PH and rotation-symmetric perturbations with
|g| > |∆| yield CFL2π with a quadratic band touching and a single
Fermi surface. (c) The transition between CFL2π and CFL0 occurs
at |g| = |∆| where three bands meet at k = 0. (d) For |g| < |∆|
one obtains CFL0 featuring separated upper and lower bands and a
single Fermi surface at appropriate density. Note that the nature of
the partially filled positive-energy band changes qualitatively, with
Berry flux jumping from 2π to 0.

particles forming the SPT:

3D electron SPT surface ↔ Nf = 1 QED3,

3D boson SPT surface ↔ Nf = 2 QED3.

Either bosonic setup from Fig. 2 thus maps toLQED3
in Eq. (2)

with k = 2 and Nf = 2.
We will package the two flavors into a single four-

component spinor Ψ4 and use Dirac matrices γ0 = τ0σz ,
γ1 = iτ0σy , γ2 = −iτ0σx, where σµ and τµ are respectively
intra- and inter-flavor Pauli matrices. Following the mapping
from Ref. 18, the symmetries in Eqs. (7) and (8) act as [40]

CΨ4C−1 = σyτyΨ4, IΨ4I−1 = σzτzΨ4. (9)

The continuum dual QED3 theory also preserves continuous
rotations

R(Φ)Ψ4(~x)R−1(Φ) = ei
Φ
2 (τz+σz)Ψ4 [R(Φ)~x] (10)

with R(π) = I. While R is not a microscopic symmetry
of the network model, we expect it to be relevant for CFL
realizations in isotropic systems.

We thus first analyze a composite-fermion Hamiltonian
HR = Ψ†4hRΨ4 containing general momentum-independent
bilinears preserving both C andR(π/2) [41],

hR = iσxD1 + iσyD2 −∆τzσz + g(τxσx + τyσy). (11)

At mean-field level (neglecting aµ) the spectrum contains
four bands, labeled as positive and negative according to their
large-k asymptotics, i.e.,

Epositive(~k) = ±g +

√
~k2 + (g ±∆)2, (12)

Enegative(~k) = ±g −
√
~k2 + (g ±∆)2. (13)

Several distinct regimes are accessible depending on g,∆, as
sketched in Figs. 3(a)-(d):

(a) For g = ∆ = 0 we recover two massless Dirac cones.
(b) At finite |g| > |∆| a quadratic band-touching emerges;

the CFL2π state then appears when the chemical potential in-
tersects only one of the central bands as in Fig. 3(b). In this
case, one can project onto states close to the band touching
(see Supplemental Material [29]), yielding Eq. (4) with two-
component spinors Ψ2 that transform as

CΨ2C−1 = σxΨ2, R(Φ)Ψ2R−1(Φ) = eiΦσ
z

Ψ2. (14)

The only perturbation allowed by R(π/2) up to O(k2) is
the C-odd mass term Ψ†2σ

zΨ2. Thus CFL2π with quadratic
band touching is stable with these symmetries. Relaxing
R(π/2) → I allows the terms Ψ†2σ

x,yΨ2, which split the
band touching into two Dirac cones without opening a gap
[see Fig. 1(b)]. Upon breaking inversion, the PH-symmetric
terms Ψ†2σ

zi∂1,2Ψ2 gap out the two Dirac cones [Fig. 1(c)].
(c) At |g| = |∆| the spectrum hosts a three-fold band touch-

ing.
(d) For |g| < |∆| a gap opens and the conduction band

‘detaches’ from the valence bands (see Supplemental Mate-
rial [29] for details). The special point (c) thus marks the
transition at which the topological winding associated with
the quadratic band touching transfers to the bottommost bands
(for ∆ > 0; with ∆ < 0 the band order reverses). Integrating
out these filled negative-energy bands does not generate a CS
term. At suitable doping one thus obtains a single Fermi sur-
face with neither a CS term nor Berry curvature, correspond-
ing to CFL0.

We emphasize that the distinction between CFL2π and
CFL0 requires both PH and inversion symmetries, since
breaking either generically splits the bands. When PH is
broken, generic Fermi surfaces enclose a non-universal non-
quantized Berry flux (Fig. 4). On the other hand, breaking
inversion symmetry while preserving PH always yields zero
enclosed Berry flux [Fig. 1(c)].

Properties. A useful device for determining the presence
of PH symmetry in numerical studies is via 2KF oscillations
in the composite-fermion density ρ̃. In the electronic case,
ρ̃k≈2KF is PH-odd and thus generically contributes to the
physical charge density [15]. In the bosonic CFL2π and CFL0,
by contrast, ρ̃k≈2KF is PH-even and does not contribute to the
boson density ρ. Any 2KF oscillations in the boson density
thus directly probe PH-symmetry breaking.

One may be tempted to argue that a Berry phase γBerry = 2π
is not meaningfully distinct from γBerry = 0. Indeed, in a rota-
tionally symmetric system the Berry phase may be computed
as

γBerry = −i
∫ 2π

0

dθ〈u|∂θ|u〉, (15)

and a simple gauge transformation |u〉 → einθ|u〉 changes
γBerry by 2πn. This ambiguity does not arise for non-
degenerate bands which always feature a well-defined
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FIG. 4. Both CFL2π and CFL0 exhibit vanishing composite-fermion
Hall conductance σ̃xy = 0 due to PH symmetry C. Upon breaking
C by the term mΨ†

2σ
zΨ2, σ̃xy = 0 crosses over to the HLR value

σ̃xy = 1 (center). For ∆/g < 1 the CFL2π band touching is lifted
by g, resulting in bands with opposite Berry-curvature (left). For
∆/g > 1 the partially filled CFL0 band develops Berry curvature as
a function of m and changes sign between small and large momenta
(right).

(smooth) local Berry curvature which can be integrated to a
unique value for γBerry ∈ R. Here, the gauge transformation
described above is singular at the origin and is thus not mean-
ingful. A useful, physical way to resolve this issue is to lift the
degeneracy by infinitesimally breaking particle-hole symme-
try, while retaining inversion symmetry. This results in ±2π
Berry flux in the partially filled positive energy band in the
CFL2π regime and zero in the CFL0 regime; cf. Eq. (16).

It is instructive to analyze how both CFL2π and CFL0 re-
duce to the conventional HLR state upon breaking PH symme-
try. A useful quantity in this context is the composite-fermion
Hall conductance σ̃xy = k

2 −
γ
2π , where k ∈ Z is the level

of the CS term for the emergent gauge field and γ ∈ R is the
Berry flux enclosed in the Fermi surface that yields an anoma-
lous Hall effect [1]. In the bosonic HLR state [Eq. (1)] k = 2
and γ = 0 so that σ̃xy = 1. PH symmetry, however, demands
σ̃xy = 0 in both CFL2π and CFL0. For the former, break-
ing PH symmetry via mΨ†2σ

zΨ2 splits the bands [Fig. 4(a)],
whereupon integrating out the negative energy states gener-
ates a k = 2 CS term. In contrast, weakly breaking PH sym-
metry in CFL0 does not produce a CS term but induces non-
zero Berry curvature in the partially filled band; see Fig. 4(c)
and Supplemental Material [29] for details. The two cases can
be summarized as:

kCFL2π
= 2, γCFL2π

= 2π

1− 2(g −∆)m√
(2(g −∆)m)

2
+K4

F

 ,
kCFL0

= 0, γCFL0
= −2π

mK2
F

8g∆2
+O

(
K4
F

∆4
,
m2

g2

)
, (16)

where KF is the Fermi wavevector. As Fig. 4(b) illustrates,
when m → ∞ we asymptotically recover σ̃xy = 1 starting
from CFL2π or CFL0, consistent with the HLR result.

Distinctions between bosonic CFLs. A quantitative (but
non-universal) difference between CFL0 and CFL2π can be
found in the crossover of σ̃xy from zero to unity upon break-
ing particle-hole symmetry, cf. Eq. (16) and Fig. 4(b). While

σ̃xy is not directly observable, Ref. 1 suggested that it may be
determined from detailed Hall-effect measurements; Ref. 42
suggested the Nernst effect as a more sensitive σ̃xy probe.

Distinguishing between CFL2π and CFL0 in the presence
of both I and C is more subtle; operators constructed from
composite fermions near the Fermi surface do not distinguish
between the two. Still, the two clearly differ in the limit
of low composite-fermion density KF � ∆, g in the same
way that bilayer graphene is distinct from 2D electron gases
with parabolic dispersion [43] (see also Supplemental Mate-
rial [29]). For example, Eq. (16) implies that for CFL2π the
susceptibility χ ≡ ∂σ̃xy

∂m |m→0 ∼ 1/K2
F diverges as KF → 0,

whereas for CFL0 χ ∼ K2
F and thus vanishes.

Alternatively, consider the 3D SPT surface, which permits
reversing the magnetic field while preserving all symmetries.
In CFL2π this amounts to smoothly sweeping the composite-
fermion chemical potential µCF between the quadratically
touching bands. The SPT surface remains in gapless CFL
throughout, up to marginal effects precisely at B = 0. In
contrast, sweeping µCF between positive and negative energy
bands in CFL0 yields a composite-fermion band insulator at
an intermediate stage, which corresponds to a physical super-
fluid [25, 26].

Gapped phases. It is well known that Cooper-pairing com-
posite fermions generates a quantum-Hall insulator of the mi-
croscopic particles. As with the HLR theory, it is natural in
CFL2π or CFL0 to consider chiral, odd-angular-momentum
pairing between composite fermions—which permits a full
gap for spinless fermions. Such states always break C [30]. An
alternative gapped phase arose in the study of time-reversal-
symmetric surfaces of 3D bosonic SPTs in Ref. 31. In our
network-model this phase arises from the edge-boson interac-
tion

L2σx =
∑

α,y
uα cos (φy−1,α − 2φy,α + φy+1,α) , (17)

where u+ 6= u− results in a C-symmetric—but not I-
symmetric—topological order with K = 2σx [44]. (I in-
terchanges u+ and u−, with the gap closing when u+ = u−.)

A symmetric gapped state is nevertheless readily con-
structed as a composite-fermion superconductor driven by
LPair ∼ Ψ†4σ

yτxΨ†4 + H.c.. We expect that this state corre-
sponds to a ‘larger’ topological order that can be reduced to
K = 2σx by condensing an I-odd boson. Edge-boson inter-
actions that generate such a state may be obtained following
Refs. 18, 44, and 45, but that is not our focus. We simply note
that in CFL2π and CFL0 with a single Fermi surface, L2σx and
LPair are both absent in the projected Hilbert space. Access-
ing either C-symmetric gapped state requires a finite coupling
strength. Conversely, any gapped state emerging from a weak-
coupling instability of CFL2π or CFL0 necessarily breaks C.

Conclusions. We constructed two PH-symmetric metal-
lic states, dubbed CFL2π and CFL0, for bosons at ν = 1.
These phases are distinct provided PH and inversion symme-
tries are present. In either case, 2KF oscillations in the phys-
ical boson density are absent but appear when PH symme-
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try is broken. Furthermore, once PH symmetry is (weakly)
broken the crossover between these states and conventional
HLR theory may be observed in transport measurements. We
also elucidated the relationship between PH-symmetric CFLs
and gapped quantum Hall states, such as the bosonic Moore-
Read state which breaks PH symmetry, and theK = 2σx state
which does not.

A recent study by Wang and Senthil [30] considers bosons
at ν = 1 in the LLL with PH symmetry and proposes a CFL
with Berry phase −2π. We believe that the states introduced
here are closely related; we emphasize however that inversion
symmetry is crucial in our setup to define a Berry phase of 2π.
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