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Gapless spin liquids have recently been observed in several frustrated Mott insulators, with
elementary spin excitations - “spinons” - reminiscent of degenerate Fermi systems. However, their
precise role at the Mott point, where charge fluctuations begin to proliferate, remains controversial
and ill-understood. Here we present the simplest theoretical framework that treats the dynamics
of emergent spin and charge excitations on the same footing, providing a new physical picture of
the Mott metal-insulator transition at half filing. We identify a generic orthogonality mechanism
leading to strong damping of spinons, arising as soon as the Mott gap closes. Our results indicates
that spinons should not play a significant role within the high-temperature quantum critical regime
above the Mott point - in striking agreement with all available experiments.

Introduction. The physical nature of the Mott metal
to insulator transition (MIT), a phenomenon generic to
strongly correlated materials, still remains the subject
of much controversy and debate. In contrast to conven-
tional critical phenomena, the relevant degrees of freedom
at the MIT cannot be easily identified using an appro-
priate order parameter of symmetry breaking principle,
although different competing orders often do arise in its
vicinity. As stressed in pioneering works by Mott and
Anderson, however, a fundamentally different physical
mechanism has to exist, because the Mott insulating state
typically persists to temperatures much higher than any
conventional order.

A clear physical picture of how a sharp Mott transition
can exist without any intervening order has emerged only
recently, with the development of Dynamically Mean-Field
Theory (DMFT) [1], which is formally exact in the limit
of large coordination. Physically, it represents the limit of
maximal frustration, therefore eliminating the precursors
of any competing order, and retaining only purely local
dynamical scattering processes. In contrast to alternative
theoretical approaches describing dilute low-energy exci-
tations, DMFT is most reliable at intermediate and high
temperatures, where incoherent behavior prevails. The
DMFT picture resulted in a finite temperature first-order
boundary between the two phases, around which many
fascinating phenomena organize themselves. Several of its
most striking predictions were experimentally confirmed
in a variety of systems, including organic charge-transfer
salts of the κ-family, as well as various transition metal
oxides. Here one can list the observation of strongly
renormalized Fermi liquids [2], bad metal behavior, Ising
universality near the Mott endpoint [3, 4], and even quan-
tum critical scaling at higher temperatures [5, 6].

At lower temperatures, most Mott insulators still un-
dergo magnetic ordering, but experimental studies of
several frustrated organic materials have instead ob-
served spin liquid behavior [7–11]. Two particular com-
pounds have attracted a lot of attention, κ-(BEDT-
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FIG. 1. (Color online) Proposed scheme to blend the static
RVB approach with the DMFT, using an impurity solver based
on emergent spinon degrees of freedom. The spinon self-energy
Σf (iω), usually absent from a mean-field RVB treatment, is
extracted from a spinon-based DMFT framework. Using the
RVB self-consistent determination of the spinon bandwidth
Jeff , this in turn allows to incorporate feedback effects due
to scattering on charge excitations, which affect the gapless
spin-excitations in the Mott state.

TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2. Most re-
markably, thermodynamic measurement in the Mott insu-
lating phase of these materials have revealed behavior nor-
mally expected for metals, including displaying linear in
temperature specific heat and large thermal conductivity,
indicating the presence of gapless magnetic excitations.

These observations are easiest to rationalize using a
time-honored idea, the resonating valence bond (RVB)
theory [12], in which chargeless spin excitations embody
a magnetic fluid with fermionic statistics. Despite this
appealing picture, the RVB approach focuses on the zero
temperature phases, and is at trouble in recovering the
expected DMFT predictions upon warming up the sys-
tem. One question that immediately arises concerns the
compatibility of the two electronic fluids, namely the
Fermi liquid describing the correlated metallic state, and
the magnetic fluid characterizing such a gapless Mott
insulator. In this Letter, we address this question by
proposing a consistent framework that succeeds in mar-
rying the DMFT and the RVB approaches. This allows
to preserve the known high temperature phenomenology
of the DMFT, while introducing the strong thermody-
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namic signature of a gapless spin liquid state in the Mott
phase. Akin to the impossibility of mixing oil and vine-
gar, we find that the Fermi liquid and the magnetic fluid
are not miscible into each other in the transition region.
While the insulating spin-liquid obviously cannot support
mobile charge carriers, the Fermi liquid metal always
shows strongly incoherent spinon excitations, due to an
orthogonality catastrophe [13–15]. This observation has
important consequences, because the two associated Fermi
surfaces cannot be tuned into each other in a continuous
way. Thus, the Mott localization into a gapless spin-liquid
turns out to have first-order character even at zero tem-
perature, similarly to the case of a spin-gapped insulator
described by frozen short-range singlets. This result is in
contrast with other scenarios based on the RVB picture
only, in which the quasiparticles vanish continuously [16–
19], but is consistent with all available experiments.

We start by describing our theoretical framework, that
is sketched in Fig. 1. The main idea is to solve the DMFT
equations by explicitly introducing spinon degrees of free-
dom, and to feedback the resulting spinon self-energy
Σf (ω) into the RVB equations, thus affecting the stability
of the spin liquid. To be concrete, we consider henceforth
the half-filled Hubbard-Heisenberg Hamiltonian:

H = −t
∑
〈i,j〉σ

d†iσdjσ + U
∑
i

[
d†i↑di↑ −

1

2

] [
d†i↓di↓ −

1

2

]

+J
∑
〈i,j〉

[∑
α,α′

d†iα
~τα,α′

2
diα′

]
.

[∑
σ,σ′

d†jσ
~τσ,σ′

2
djσ′

]
. (1)

Here t is the intersite hopping, U the local Coulomb in-
teraction, J an explicit nearest neighbor exchange, and
we have denoted by ~τ the set of Pauli matrices. The RVB
picture results here from a decomposition of the physical
electron into a chargeless spin-carrying fermion f†j,σ and a

spinless charge-carrying compact boson Xj = eiθj , using
on each site j the so-called slave rotor [16, 20] decomposi-

tion d†j,σ = f†j,σe
iθj , with i∂/∂θj =

∑
σ[f†jσfjσ − 1

2 ]. This
provides an effective Hamiltonian:

Heff =
∑
〈i,j〉σ

f†iσfjσ

[
Jeff − tei(θi−θj)

]
− U

2

∑
i

∂2

∂θ2
i

, (2)

with Jeff = −J
〈
f†iσfjσ

〉
the RVB bond parameter. This

approximation of the Heisenberg term assumes the for-
mation of a spinon Fermi surface, yet neglects a possible
momentum-dependent spinon self-energy. Such non-local
effects, associated to fluctuations beyond the RVB mean-
field, are not expected to change the physics of the spin-
liquid Mott insulator, owing to the strong stability of
such zero-entropy charge-gapped state. The mean-field
Hamiltonian (2) is consecutively solved within the DMFT,
by employing an impurity solver that is naturally based
on the spinon/rotor decomposition [20], leading to the
following respective local Green’s functions in Matsubara

domain:

Gf (iωn)−1 = iωn + µ− Σf (iωn)−∆f (iωn), (3)

GX(iνn)−1 =
ν2
n

U
+ λ− ΣX(iνn), (4)

and self-energies in imaginary time:

Σf (τ) = ∆(τ)GX(τ), (5)

ΣX(τ) = N∆(τ)Gf (τ), (6)

with N = 3 to ensure the right shape of the Mott
phase diagram, and λ a Lagrange multiplier that en-
forces the constraint |Xj |2 = 1 in average, namely
GX(τ = 0) = 1. The DMFT self-consistency equations
account both for the physical electron and the spinon
hybridization functions, which read for the Bethe lattice:
∆(τ) = t2Gd(τ) = t2Gf (τ)GX(τ) and ∆f (τ) = J2

effGf (τ).
The generic RVB equation, Jeff = −JGf (〈i, j〉 , τ = 0)
can now be explicited on the Bethe lattice:

Jeff =
J

2β

∑
iωn

Jeff

z2n
2 + zn

√
z2n
4 + J2

eff + J2
eff

, (7)

with zn = ωn − ImΣf (iωn) and β = 1/T the inverse
temperature. We will set in what follows t = 1/2, taking
the electronic half-bandwith D = 2t = 1 as natural energy
unit. The computation of the electronic specific heat
results from the internal energy per site (with Ns sites):〈

H
〉

Ns
=

2

βNs

∑
n,k

[εdkGd(k, iωn) + εfkGf (k, iωn)]eiωn0+

+
U

2
D↑↓ +

1

Ns

∑
〈i,j〉σ

J2
eff

J
, (8)

with ε
d/f
k the electron and spinon dispersion relations,

and Gd/f (k, iωn) their respective lattice Green’s func-
tions. For the Bethe lattice, the sum over momentum in
Eq. (8) can be replaced by an energy integral over the
corresponding semi-circular density of states [21]. An
important term to consider here is the double occupancy
D↑↓, which is related to the local charge susceptibility by
D↑↓ = (1/2)χc(τ = 0). This quantity can be expressed
from either a spinon response χfc or a rotor response χXc :

χfc (τ) =
〈∑
σ,σ′

[f†jσ(τ)fjσ(τ)− 1

2
][f†jσ′(0)fjσ′(0)− 1

2
]
〉
,

χXc (τ) =
〈
i
∂

∂θj
(τ)i

∂

∂θj
(0)
〉
. (9)

Both expressions are equivalent only provided the con-
straint is dealt strictly, but in a mean-field treatment, one
must use Nagaosa and Lee’s composition rule [12, 21],
χc(iω) = [(χfc )−1 + (χXc )−1]−1.

The solution of the combined RVB and DMFT self-
consistent scheme provides the physical density of states
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FIG. 2. (Color online) Upper panel: electronic density
of states across the Mott transition for T = 0.005D and
J/D = 0.2, with increasing values of the Coulomb interaction
U/D = 1, 2, 3. Lower panel: corresponding specific heat as
a function of temperature. A striking linear in temperature
contribution remains in CV at U/D = 3, while quasiparticles
have disappeared from the density of states in the Mott phase.

and specific heat curves shown in Fig. 2. The electronic
density of states shows at low temperature the expected
behavior: the quasiparticle peak narrows down for in-
creasing values of U , with strong spectral weight transfer
towards Hubbard bands located at ±U/2. This situation
persists upon a discontinuous disappearance of the quasi-
particle peak, leading to the formation of an insulating
state with a large Mott gap (shown for U = 3). The for-
mation of heavy quasiparticles can equally be witnessed
in the specific heat (bottom panel in Fig. 2), with a strong
enhancement of the γ = CV /T coefficient at the lowest
temperature. However, in strong contrast with the usual
DMFT predictions [1, 21], we find the persistence of a fi-
nite γ coefficient in the Mott phase, instead of the usually
observed activated behavior for a high entropy param-
agnetic insulator. This result is in agreement with the
thermodynamic measurements made in several organic
materials showing spin liquid behavior. Fitting from Fig. 2
the low-temperature linear slope of CV in the Mott insu-
lating phase, we find γ = 27k2

B/D and γ = 14k2
B/D for

J/D = 0.2 and J/D = 0.4 respectively. Taking the half-
bandwidth in the range D = 200 meV, from recent esti-
mates on various organic systems [22, 23], we have approx-
imately γ = 80 mJK−2mol−1 and γ = 40 mJK−2mol−1

for J/D = 0.2 and J/D = 0.4 (these correspond to typical
values of the exchange constant in organics [24]). Our
predictions are somewhat larger, but of the right magni-

tude, with the experimental value γ = 20 mJK−2mol−1

measured both for the EtMe3Sb[Pd(dmit)2]2 [10] and
κ-(BEDT-TTF)2Cu2(CN)3 compounds [9].

We now demonstrate that this thermodynamic effect
has a strong influence of the metal-insulator phase dia-
gram. The main reason is the quenching of the entropy
of the Mott insulator by the presence of a finite exchange
interaction J , which typically bends the transition lines
towards a stabilization of the metal upon heating. Indeed,
the entropic contribution to free energy of the insulator is
strongly diminished by exchange, leading to a reentrance
of the first order transition lines [25–27]. We show in
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FIG. 3. (Color online) Phase diagram for J/D = 0.1 (upper
panel) and J/D = 0.4 (lower panel) as a function of Coulomb
strength U/D and temperature T/D. Continuous lines denote
the metal-insulator boundaries, and dashed lines indicate the
true first-order transition based on the free energy. Also, the
region bounded by dots show the low-temperature onset of
the spinon Fermi surface in the Mott insulator. The shaded
region indicates that Jmetal

eff = 0 for the metallic state within
the whole coexistence region. This demonstrates that spinons
are only well defined quasiparticles in the low temperature
Mott phase, and are never stable in the metal.

Fig. 3 two phase diagrams, for J/D = 0.1 and J/D = 0.4
respectively. The continuous lines denote the metal to
insulator boundaries, Uc1(T ) and Uc2(T ) at which the in-
sulator and metallic solution disappear respectively. For
small J (upper panel), only the Uc1 line is bent, while
the whole transition region is affected for large J (lower
panel), with a slight increase of the maximum critical
temperature Tc due to the coupling to spinon degrees of
freedom. Most importantly, the critical domain moves
towards strongly reduced values of the Coulomb strength
U at increasing J , so that the Brinkman-Rice transition,
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associated to a diverging γ coefficient, is strongly pre-
empted by spin fluctuations. This readily explains the
small values of γ that were found in our calculations.

We then consider the fate of the gapless insulating spin
liquid. The phase diagrams of Fig. 3 also show as dots
the onset of the spinon Fermi surface, namely the low-
temperature domain where the effective spinon bandwidth
Jeff 6= 0. We find that this domain corresponds precisely
to the region of existence of the Mott insulator (only at
low temperature for small J , and at temperatures up to
the critical Tc of the terminal Mott endpoint for large
enough J). Said otherwise, the high entropy local moment
insulator is always unstable to the formation of a low
entropy spin liquid, even in the coexistence region of the
MIT where the Mott gap is strongly reduced. Since the
gapless spin-liquid state penetrates fully the part of the
phase diagram where metal and insulator coexist, one can
wonder whether the metallic state is capable of hosting
non-trivial spinon excitation. We find however, for all our
simulations, that the spinon bandwidth always vanishes
in the metal, namely Jmetal

eff = 0. Since the critical value
Uc2(T = 0) for the loss of the metal steadily decreases
with increasing J , this shows that the Mott transition
becomes intrinsically first order at zero temperature, in
contrast to the case J = 0 (standard DMFT), where the
quasiparticle weight continuously vanishes.

We finally show that spinons are dramatically repelled
from the Fermi liquid because of the generic occurence
of an orthogonality catastrophe in the spinon self-energy
Σf (ω) for a Fermi liquid state. The reason is deeply
rooted in the spinon/rotor decomposition, and its associ-

ated constraint Q = i∂/∂θj −
∑
σ[f†jσfjσ − 1

2 ] = 0. While

the spectral function of the physical electron d†jσ = f†jσe
iθj

connects excitations within the physical subspace Q = 0
only, the spinon density of states corresponds to processes
that link the physical subspace Q = 0 to an unphysical
subspace Q = 1 containing one extra auxiliary slave-
particle. Thus, the spinon density of states involves ma-
trix elements of the type |

〈
Φ(1)|f†jσ|Φ(0)

〉
|2, where |Φ(Q)

〉
are wavefunctions living in different Q-subspace, which
thus experience in a metal a singular x-ray edge. Due
to this mechanism, the spinon self-energy acquires an
anomalous frequency dependence Σf (ω) ∝ ωα at low-
energy (typically α < 1/2). This crucial property is well
obeyed by construction in our impurity solver [20], and
can be shown from an exact numerical solution of quan-
tum impurity problems [13, 14], as well as from 1/N
fluctuations [28] around the condensed slave boson mean-
field theory (upon which the static RVB picture is based).
The calculated spinon self-energy is shown in Fig. 4 for
the metallic and insulating phases. The anomalously large
spinon scattering rate is clearly seen for U/D = 1, while
a regular behavior is found for U/D = 3. Spinon are thus
very incoherent in the metallic state, insomuch as to fully
destroys their Fermi surface, as we discuss now.
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FIG. 4. (Color online) Frequency-dependent spinon self-energy
Σf (iωn) at temperature T = 0.005D for U/D = 1 (metal) and
U/D = 3 (insulator). The strong enhancement in the metal
is due to an x-ray edge effect, which is a hallmark the spinon
spectral density.

The spinon orthogonality catastrophe is indeed the key
physical mechanism leading to the instability of the spinon
Fermi surface in the whole metallic phase. The absence
of spinons in the metal, Jmetal

eff = 0, can be formulated
as a simple inequality from the linearized version of the
RVB equation (7):

1

J
>

1

2β

∑
iωn

1

[ωn − ImΣf (iωn)]2
. (10)

Using the anomalous spinon self-energy Σf (iω) =
−iCf |ω|αSign(ω) at low energy, and evaluating the Mat-
subara sum at low temperatures, we find the inequality
for stability of the a true Fermi liquid:

1

J
>

∫ ∞
0

dω

π

1

[ω + Cfωα]2
(11)

Since α < 1/2, the infrared divergence in the integral
is cut off and the inequality is fulfilled for small J . In
contrast, the Mott insulator is always unstable to the spin-
liquid because the integral diverges for Σf = 0. These
analytic arguments are in complete agreement with our
numerical findings.

In conclusion, we have examined the role of gapless
spin excitations, characterizing frustrated Mott insula-
tors, in the vicinity of the Mott metal-insulator transition
at half-filling. Our result indicate that the spin-liquid
arises simultaneously with Mott gap opening, suggesting
that local magnetic moments generically tend to form a
zero-entropy gapless state in absence of magnetic order-
ing. However, a spinon Fermi surface cannot be stabilized
upon closing of the Mott gap, due to an orthogonality
catastrophe we identified with emerging charge fluctua-
tions. This mechanism leads to the conclusion that the
Mott transition associated with the loss of quasiparticles
at Uc2 is inherently of first-order type, even at zero tem-
perature and for a zero entropy Mott insulator. From
this perspective, we advocate a scenario where behavior



5

consistent with quantum criticality (QC) has purely local
character and emerges only at high temperatures, above
the metal-insulator coexistence region, consistent with
experiments. Our result indicate, thus, that spin liquid
correlations do not play a significant role within this high
temperature QC region, which marks the closing of the
Mott gap. The physical picture we propose is dramatically
different from the perspective provided from alternative
theories [16–19], which postulate the dominance of spin-
liquid excitation in the entire QC regime surrounding the
Mott point.
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