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We show that an interplay between quantum effects, strong on-site ferromagnetic exchange in-
teraction and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit
coupled metallic state in regimes where classical treatments predict a trivial insulating behavior.
This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-
induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.
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Introduction.– The behavior of correlated quantum
systems can rarely be understood in terms of individ-
ual atoms or electrons, and instead is determined by a
competition between their strong interactions and kinetic
energy [1]. This interplay often places states with funda-
mentally different properties energetically close to each
other, and hence makes the system highly sensitive to
external controls such as pressure, or magnetic field [2].

A paramount example of correlation-driven tun-
able phenomena is the colossal magneto-resistance in
transition-metal oxides, e.g. manganites [3, 4]. Proper-
ties of these materials are governed by the ferromagnetic
Kondo lattice model (FKLM) which includes competition
between kinetic energy of itinerant electrons and their
Hund exchange coupling with localized spins [5, 6]. This
interaction often exceeds the conduction bandwidth and
ensures that only on-site triplets, i.e. electrons whose
spins are aligned with local magnetic moments, can ex-
ist at low energy. For classical core spins (S ≫ 1), an
effective electron hopping amplitude between two lattice
sites strongly depends on the magnetic background: it is
largest when local spins on the two sites are parallel, and
vanishes for anti-parallel [antiferromagnetically (AF) or-
dered] local moments [7, 8]. As a result, the conductivity
of a system becomes highly sensitive to small variations
in the magnetic texture, e.g. caused by an external mag-
netic field. This so-called double-exchange (DE) physical
picture remains qualitatively valid when quantum fluc-
tuations of the local magnetism are taken into account
[9–13] and in the extreme quantum case S = 1

2 [14].

Nevertheless, even early works [8] hinted at a break-
down of the DE semiclassical description in the presence
of strong AF correlations between local spins when they
form at least short-range Néel order. While in an ideal
antiferromagnet an electron can not move, it still gains
energy via smooth deformations of the Néel background.
Quantum fluctuations allow local spins to form singlets
with mobile fermions and further distort the AF texture.

In the present Letter we demonstrate that quantum na-
ture of the local magnetism dramatically affects physics of
a FM Kondo lattice with AF correlations between core

spins [Fig. 1(a)]. We focus on a S = 1
2 FKLM in the

strong-coupling regime, when Hund and AF interactions
exceed the electron bandwidth, and show that the AF
environment of each core moment frustrates the on-site
Hund exchange V [Fig. 1(b)]. Properties of the model
are controlled by a competition between V and an energy
scale Ω of the antiferromagnetism. When these energies
are significantly different, the system is an insulator with
localized band electrons. However, near the resonance
V ≈ Ω, the AF and Hund interactions effectively cancel
each other allowing quantum effects to stabilize a new
correlated metal phase whose quasiparticles admix sin-
glet and triplets states of bare electrons and local spins.
These excitations distort the AF order and give rise to
a transverse (to the Néel vector) magnetization. This
resonant behavior is absent in a semiclassical DE theory
which predicts an insulating state for any Hund coupling.
The correlated metal phase can be observed in

fermionic alkaline-earth atoms (AEAs) [15], such as 87Sr
[16] or 173Yb [17–22], in a two-band optical lattice where
atoms in the lowest (localized) and higher (itinerant)
bands correspond to core spins and mobile fermions,
respectively [Fig. 1(c)]. We propose to simulate the
AF background with an artificial, laser-induced magnetic
field [23–25], which in AEAs can be implemented either
using Raman transitions between nuclear spin levels [26]
or Rabi coupling of 1S0 and 3P0 electronic clock states
[27]. The laser phase can be controlled to vary from one
lattice site to the next in a staggered fashion, while the
Rabi or Raman coupling of relevant atomic states pro-
vides a handle of the above singlet-triplet (s-t) resonance.
Correlated metal in a strongly-coupled FKLM.– Let

us consider a generic FM Kondo lattice with AF superex-
change interactions between core moments:

H =− J0
∑

〈ij〉
(c†incjn + h.c.) + IH
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〈ij〉
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defined on a bipartite (e.g. square) lattice of Fig. 1(b).

Here c†in creates an electron with spin n = ↑, ↓ (we
assume summation over repeated indices) at site i =



2

(b)

Ω0

DE metal

J0

corr. metal

V ∼J0

insulator insulator
(a)

J0

1

2
−V

V

i j
〈ij〉

|↑〉
|↓〉Ω

Ω

(c)

Ω
V

E
V

0

η+2

4

η−2

4

−η

4

Ω0/V

∆

|↑↑〉= |t〉

|↓↓〉

|s〉

|u〉

(d)

Ω
V

E
V

0

3
2

-
1
2

1

∆

|↑↑〉

|↓↓
〉=
|t〉

|10〉

|00〉= |s〉

(e)

i j i j

J

d†it|0i0j〉 d†js|0i0j〉

d†jsdit

FIG. 1. (a) Schematic phase diagram of Eq. (1) with V ≫ J0

(Ω is the AF interaction strength), featuring the correlated
metal state for strong coupling Ω ∼ V . The conventional
ferromagnetic (DE) metal occurs at Ω . J0. Bottom row:
allowed and forbidden (indicated by red crosses) hopping pro-
cesses. Blue (red) color marks mobile (local) fermions. Light
blue spins show final states of itinerant fermions. Gray el-
lipses denote local entangled singlet-triplet (s-t) states [|s〉 in
(d)]. (b) The electronic model of Eq. (1). Color notations are
as in (a). Local spins feel a staggered mean-field Ω ∼ IH〈Sz〉
due to the AF background. (c) Optical lattice of the AEA
setup Eq. (5). Band 1 (2) is localized (itinerant). Gray ar-
rows indicate the laser-induced staggered Zeeman field Ω that
splits pseudo-spin |↑, ↓〉 states. Gray ellipse is a spin-singlet
state. Other notations are as in (b). (d) Energies on an iso-
lated site with one fermion. Blue lines [red circle] indicate the
s-t subspace [resonance]. Inset: Hopping of s-t excitations diα
(3). Other notations are as in (a). (e) Same as in (d), but for
the AEA model (5). The s-t subspace is an excited manifold.

1 . . .N . The first line contains nearest-neighbor (NN)
hopping J0 on a link 〈ij〉, and the AF exchange IH > 0
between local moments Si. The latter are coupled to
mobile spins sci = 1

2c
†
inσnmcim (σ are Pauli matrices)

via a FM Hund exchange V with an XXZ anisotropy
(⊥ denotes xy vector components) η ∈ [0, 1] arising from
atomic spin-orbit coupling and crystal-field effects. Due
to same reasons, the AF interaction is also anisotropic:
we consider the simplest Ising limit, but our results are
applicable to a general XXZ case. The last term (with

nc
i = c†incin) is a NN Coulomb repulsion (see below).

We focus on the strong-coupling limit J0 ≪ IH , V
and assume that core moments are AF-ordered, 〈Sz

j 〉 =
〈Sz〉eiQ·xj [xj ≡ j, Q = π for a one- (1D), (π, π) for a
two-dimensional (2D) lattice, etc]. Mobile electrons will
form entangled states with local spins, and above certain

density nc > nc
cr, destroy the Néel order even for J0 ≡ 0.

Hence, the above assumption is valid only in the low-
density regime nc ≪ 1 when electrons rarely occupy NN
sites. This regime is enforced by the repulsion R in Eq.
(1). The AF background can be taken into account by
performing a staggered transformation:

cin =ain (i even); cin = ai,−n (i odd);

Si =
(

T x
i , (−1)iT y

i , (−1)iT z
i

)

, (2)

where ain and Ti are new mobile fermions and local
spins. As a result, the first line in Eq. (1) becomes

−∑

〈ij〉
[

J0σ
x
nm(a†inajm+h.c.)+IHT z

i T
z
j

]

; other terms re-

main unchanged with cin → ain (sci → sai) and Si → Ti.
In this staggered frame, the mean-field Hamiltonian

of an isolated site is Hi = −V
[

T⊥
i · s⊥ai + ηT z

i s
z
ai

]

−
zIH〈T z

j 〉T z
i . Here the last term is a molecular field acting

on a core spin in the AF environment and z is the lattice
coordination number. We assume that 〈T z

j 〉 = 〈T z〉 > 0
is j-independent and denote Ω = zIH〈T z〉. In a low-
density regime, we can focus only on the na

i = 1 subspace
[see Fig. 1(d)]. There are two states with total spin

projection T z
t = ±1: |t〉i = a†i↑|↑〉i and |↓↓〉i = a†i↓|↓〉i

and energies E1,2 = − η
4V ∓ 1

2Ω; and two T z
t = 0

states: |u, s〉i = r±a
†
i↑|↓〉i ∓ r∓a

†
i↓|↑〉i with energies

Eu,s =
η
4V ± 1

2

√
V 2 +Ω2, where |n〉 is a core-spin state,

r± = 1√
2
(cosϑ±sinϑ), tg 2ϑ = Ω/V (here |σ〉i is a short-

hand notation for |σ〉i⊗|0〉, |0〉 is the a-fermion vacuum).
When Ω = Ω0 = (1 − η2)V/2η, |s〉i and |t〉i become de-
generate, and at strong-coupling define the local s-t sub-
space. For Ω ∼ Ω0 other states, separated by a large gap
∼ Ω0, can be ignored. We represent this Hilbert space
with constrained (no double occupancy) fermions [28]

d†is|vac〉 ↔ |s〉i, d†it|vac〉 ↔ |t〉i. (3)

Here |vac〉 =
∏

i |↑〉i is a vacuum state with na
i = 0.

Near the resonance Ω = Ω0, the system is described
by an effective Dirac-like Hamiltonian

Hd=−J
∑

〈ij〉
[σx

αβd
†
iαdjβ+h.c.] +∆

∑

i
(nd

is −nd
it), (4)

obtained by projecting the Hamiltonian (1) onto s-t sub-
space (3), i.e. by computing matrix elements of Eq. (1)

between states d†iα|vac〉 [29]. In Eq. (4), J = J0r+,

α, β = s or t, and nd
iα = d†iαdiα (with nd

i = nd
is+nd

it). The
first term contains hopping processes [see inset in Fig.
1(d)] that mix local entangled |s〉 and classical |t〉 states
(3) [because of σx

αβ ]. This emergent spin-orbit coupling is
rooted in an interplay between strong exchange interac-
tions and quantum fluctuations, and manifests in a trans-
verse [orthogonal to Néel vector 〈Sz

i 〉] spin polarization of

d-particles: T⊥
i = r+

r−
s⊥ai = 1

2r+σ
⊥
αβd

†
iαdiβ . The second

term contains an effective detuning ∆ = Ω − Ω0 from
the s-t resonance and describes a competition between
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Hund interaction and AF correlations, both favoring an
insulator (at large |∆| ≫ J) with localized fermions. Re-
markably, for |∆| ∼ J the state of the system is driven by
a subdominant kinetic-energy scale J , which stabilizes a
correlated metallic phase with transverse spin excitations.
Since the sign of ∆ is irrelevant in (4), we will fix ∆ > 0.
The s-t resonance occurs because η < 1. In the

isotropic (η = 1) strong-coupling case Eq. (1) describes
an insulator with localized triplets (similar to a DE model
[7]). However, this state is unstable for η < 1 and IH ∼V .
The existence of a s-t resonance does not contradict the
“poor man” scaling [30, 31] where the XY exchange V
flows to zero at low energies. Indeed, the latter is appli-
cable only at weak coupling V ≪ J0, while our theory
operates in the opposite, strong coupling regime V ≫ J0.
Singlet-triplet resonance with AEAs.– We propose to

realize the correlated metal phase using AEAs in an op-
tical lattice of Fig. 1(c). The spin- 12 degrees of freedom
can be implemented with (i) nuclear spins of atoms in the
g electronic state, or (ii) e and g states of nuclear-spin
polarized atoms. The Hamiltonian of the system is:

H =− J0
∑

〈ij〉
(c†i2ncj2n + h.c.)−

∑

i

[

V c†i1nci1mc†i2mci2n+

+Ω(−1)i(c†ia↑cia↑ − c†ia↓cia↓)
]

+ U
∑

i

nc
i2↑n

c
i2↓, (5)

where c†ian creates a fermion at site i in Bloch band
a = 1, 2 with spin n. Band 1 is localized and contains
one atom per site, while the itinerant band 2 has an arbi-
trary filling and a NN hopping J0 [32]. The second term
in Eq. (5) is an interband exchange interaction. It is FM
(V > 0) because atoms can experience s-wave collisions
only in a spin-singlet state. The third term contains the
staggered [indicated by (−1)i = eiQ·xi] Zeeman-like Ra-
man [in case (i)] or direct Rabi [for case (ii)] coupling,
with Ω > 0 which simulates the AF environment in Fig.
1(b) [33]. Finally, there is a local repulsion U due to

intraband s-wave collisions (nc
ian = c†iancian).

Since atoms in band 1 are localized they only con-
tribute spin degrees of freedom, Si =

1
2σnmc†i1nci1m. Up

to a density-density interaction, magnetic terms in Eq.
(5) can be rewritten as −2

∑

i

[

V Si · sci + Ω(−1)i(Sz
i +

szci)
]

, where we omitted the band index, cin ≡ ci2n. Ap-
plying the transformation (2) to Eq. (5), we get rid of
(−1)i, and replace cin → ain (sci → sai) and Si → Ti.
On an isolated site i there are 8 eigenvaluesEna(Tt, T

z
t )

labeled by the total spin Tt, its projection T z
t and

fermion number na: E0

(

1
2 ,± 1

2

)

= E2

(

1
2 ,± 1

2

)

−U = ∓Ω,

E1(0, 0) = −3E1(1, 0) =
3
2V and E1(1,±1) = −V

2 ∓ 2Ω.
Energy levels with na = 1 are shown in Fig. 1(e). For
small J0 a mobile atom can propagate only when two or
more states are at resonance, i.e. for Ω = 0 or V . The
first case is a usual FKLM [5] without AF correlations.
We will concentrate on the second resonance at Ω =

V , reached in an excited s-t manifold spanned by the
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FIG. 2. Propagation of wavepackets with 5 particles. (a)
and (b) show total density 〈nd

i (t)〉; (c) and (d) contain the
transverse local-spin polarization 〈T x

i 〉. Blue numbers in top
right corners indicate the detuning ∆/J . Inset: comparison
between density evolution at a fixed xi = i0 [black arrow in
panel (a)] in the full model (4) (blue line) and in the case of
non-interacting (n-int) d-fermions (black line). The parame-
ters are N = 101, A = 10−3J , and k0 = −20π/N .

local singlet |s〉i = 1√
2
[a†i↑|↓〉i − a†i↓|↑〉i] and triplet |t〉i =

a†i↓|↓〉i [red circle in Fig. 1(e)], and identify these states

with the corresponding states (3): now d†is creates a pure

spin-singlet, while d†it creates a triplet. In an excited
manifold, the vacuum state |vac〉 = ∏

i |↓〉i has local spins
antiparallel to Ω. Near the s-t resonance, other singly-
occupied states are separated by a gap ∼ V and can
be ignored, together with the doubly-occupied manifold.
The system is described by the effective model (4) with
J = 1√

2
J0, ∆ = V − Ω [34]. Thus, in a strong-coupling

regime J0 ≪ Ω, V and for Ω ∼ V , the AEA setup (5)
can be used to simulate the s-t resonance dynamics of
Eq. (1). For example, the transverse magnetization of

a d-particle is now T⊥
i = −s⊥ai = −σ⊥

αβd
†
iαdiβ/

√
8. We

focus on the excited s-t manifold because a cold-atom
system is usually well-isolated from its environment and
can not escape the s-t subspace due to decoherence.

Wavepacket dynamics in 1D.– The spin-motion cou-
pling and transverse spin of d-fermions can be probed
via propagation of many-body wavepackets. We focus on
a 1D case and study dynamics of the model (4) within
a time-dependent density matrix renormalization group
(t-DMRG) method [35–38]. The initial wavefunction is
assumed to contain only triplets and is a ground state
(GS) of the HamiltonianH1D(t < 0) = −J

∑

i

[

d†itdi+1,t+

h.c.
]

+A
∑

i

[

xi − N
2

]2
nd
it that describes fermions dit in a

harmonic trap with A > 0. At t = 0, the trap is removed,
so H1D(t > 0) = Hd, and the packet is accelerated to a

momentum k0 by applying an operator eik0

∑
i xin

d
it .

Fig. 2 shows evolution of five-fermion wavepackets for
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FIG. 3. Phase diagram of the model (4) on aN = 40 site chain
with periodic boundary conditions. Black and blue lines mark
1st order transitions. For the correlated metal phase, the
Drude weight D > 0, while in all other states D = 0. Dashed
red line separates metallic (below) and band insulator (above)
states in a model with non-interacting (n-int) d-fermions. At

∆ = 0, D = 1

π

√

(2J)2 − µ2 for |µ| < 2J and 0 otherwise. On
the left: Drude weight and ground-state energy E0 for ∆ = J
plotted along the arrow in the main panel. Notations are as
in Fig. 2. Notice jumps in ∂E0

∂µ
at phase transitions. For

µ ≈ −0.5 (CDW state), E0 decreases with increasing nd
t . For

n-int fermions, one has to multiply D and E0 (black curves) by
2 due to spin degeneracy, absent for constrained d-fermions.

∆ = 0.1J and ∆ = 3J . Near the s-t resonance, the ini-
tial distribution splits into two fast counter-propagating
parts with opposite transverse local magnetization 〈T x

i 〉
[Fig. 2(a) and (c)], while for large ∆ this splitting is neg-
ligible and the state remains practically localized [Fig.
2(b) and (d)]. To understand this behavior, we consider
dynamics of a single d-fermion, when the Hamiltonian
(4) can be diagonalized in terms of quasiparticles with
dispersion εkλ = λρk = λ

√

(2J cos k)2 +∆2 (λ = ±)
[39]. Because these bands have opposite group velocities
vλk = λ∂kρk, after a time t > 1/J the density has an
approximate form 〈nd

iα(t)〉 ≈ Rα(ξ−) + Lα(ξ+) where
ξ± = xi ± v−k0

t, v−k0
= −2J | sink0|/ρk0

, and Lα, Rα

with Rs

Ls
≈ 1 and Rt

Lt
≈

(ρk0
−∆

ρk0
+∆

)2
describe right and left

movers. For large ∆, Rt ≪ Lt [see Fig. 2(b)]. Similarly,

〈T x
i (Jt > 1)〉 ≈ R(ξ−) + L(ξ+), with

R
L

≈ − ρk0
−∆

ρk0
+∆ < 0

[Fig. 2(c)]. This single-particle picture is valid near
wavepacket edges with low fermion density [see inset of
Fig. 2], and breaks down at the strongly-correlated core.

The correlated metallic state.– To capture interac-
tion effects that lead to correlated metal phase and drive
metal-insulator transitions, in Fig. 3 we compute phase
diagram of Eq. (4) in 1D, as a function of the detun-
ing ∆ and chemical potential µ (described by a term
δHd = −µ

∑

i n
d
i ). We characterize various GSs with a

Drude weight (DW) D related to the longitudinal con-
ductivity as Reσxx(ω → 0) = Dδ(ω): D > 0 for a metal
and vanishes in an insulator. For a system with periodic

boundary conditions, D = 1
N

d2E0

dφ2

∣

∣

φ=0
where E0 is the GS

energy and φN is the flux piercing the ring [40, 41]. In

Eq. (4) we replace d†iαdi+1,β → d†iαe
iφdi+1,β and treat

this model using an unbiased DMRG technique [42].
The physics of a non-interacting (n-int) model (4) is

determined by filling of single-particle bands εkλ: When
µ is inside one of them the system is a metal (regions
below dashed red line in Fig. 3), otherwise it is a band
insulator [43]. The correlated nature of d-fermions quali-
tatively changes this picture by dramatically suppressing
the metallic phase and transforming the band insulator
to either charge density-wave (CDW) with nd < 1, or
a triplet Mott state with nd = nd

t = 1. Metallic, CDW
and Mott phases are separated by a 1st order transition.
Surprisingly, a CDW state with nd = 0.5 emerges ex-
actly at µ = −∆, right at the metal-insulator transition
for non-interacting fermions. While the latter is driven
by a simple band filling, the CDW arises due to quan-
tum effects: For µ = −∆ the on-site energy of a triplet
vanishes which results in a macroscopic degeneracy (as-
sociated with different fillings of triplets) of the classical
GS. Quantum fluctuations due to s-t virtual hoppings
then select a GS with a two-site unit cell. For nd > 0.5
this state evolves into CDWs with larger unit cells.

At low density, one can extract the DW from a group
velocity of a wavepacket with small momentum k0, v

−
k0

≈
k0

m∗
[m∗= 1

(2J)2

√

(2J)2+∆2], as D(nd≪1)≈ nd

m∗
=

ndv
−

k0

k0
.

Discussion.– We studied a FKLM and demonstrated
that an interplay between strong on-site FM exchange
and AF correlations, each favoring an insulating behav-
ior, allows the small kinetic energy to stabilize a cor-
related metallic phase, whose elementary excitations in-
volve resonating singlet and triplet states of bare local
spins and mobile fermions. This s-t mixing leads to a
distortion of the AF order and local magnetization per-
pendicular to the Néel vector. We also showed how one
can probe this physics in a quantum simulator with AEAs
in optical lattices under a laser-induced magnetic field.

Our results, obtained using a low-energy model (4),
remain valid within the full Hamiltonian (5) with Ω > J
[44], and should be applicable beyond 1D, because the
phases in Fig. 3 are not associated with spontaneous
breaking of any continuous symmetry.
The observation of wavepacket dynamics in Fig. 2 and

transverse spin excitations does not require temperatures
∼ J and relies on an uncorrelated initial triplet state.
These features can be probed in quench experiments with
AEAs in moving optical lattices [45]. The Drude weight
D can be measured as a response to a weak optical lattice
tilt [46]. Thus the phase diagram in Fig. 3 can be verified,
at least for low-densities and deep lattices when the band
relaxation due to collisions is energetically suppressed.
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