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A stable nano-scale thermal hotspot, with temperature approaching 100 ◦C, is shown to be sus-
tained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore.
The self-similar (length independent) conic geometry allows us to match the singular heat source
at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady tem-
perature profile along the cone and the resulting ionic current conductance enhancement due to
viscosity reduction. The universal scaling, which depends only on a single dimensionless parame-
ter Z, collapses measured conductance data and computed temperature profiles in ion-track conic
nanopores and conic nanopipettes. The collapsed numerical data reveals universal values for the
hot spot location and temperature in an aqueous electrolyte.

PACS numbers: 47.57.jd, 47.61.Fg, 66.10.cd

Ohmic heating in nanopore has recently been estab-
lished as a means to rapidly establish stable thermal
hot spots, with superheated temperatures [1, 2]. Such
hotspots can be indirectly detectd by a stable increase
in the ionic current due to the decreased viscosity of the
heated water [3]. We extend this concept to slender conic
nanopores, where the focused electric field can reduce the
longitudinal dimension of the hot spot to nanoscales at
the tips of macroscopic (cm-long) pores. Moreover, the
self-similar conic geometry allows us to develop a univer-
sal size-independent theory for the conductance enhance-
ment and the hot spot temperature, location and dimen-
sion. With the smaller longitudinal dimensions and uni-
versal scaling of these conic nanopore hotspots, nanoscale
phenomena such as single-molecule thermophoresis [4],
single biomolecule binding kinetics and thermodynamics
and single bubble nucleation [5, 6] can be studied in a
precisely controlled nanoscale location with distinct ion
current signatures.

Due to field focusing, the electric field E blows up to-
wards the tip in a conic nanopore as R−2, where R is
the local cross-section radius of the cone (see Fig. 1b),
and hence the Ohmic heating rate per unit volume, which
scales as E2, blows up as R−4. The external temperature
profile for a perfect cylinder, however, blows up as lnr
in the radial direction and would be responsible for an
R-independent heat loss rate per unit length along the
cylinder. This seems to suggest that a steady temper-
ature profile with balance between heat generation and
heat loss cannot be established. However, as shown in our
analysis, proper accounting of the far-field external longi-
tudinal flux that eliminates the singular lnr dependence
for an infinitely long cylinder [7] is able to produce the de-
sirable R−2 scaling for heat loss per unit length. Conse-
quently, the stable steady-state temperature profile that
results from a balance between two nearly singular fluxes

at the tip of a cone is very mathematically similar to the
balance of singular azimuthal capillary forces and electri-
cal Maxwell or Coulombic forces for DC [8] and AC [9]
to establish robust interfacial cones. All share the conic
geometry responsible for singular electric fields and sin-
gular forces or fluxes. All produce self-similar universal
scaling results that are independent of the actual length
of the cone. However, unlike the interfacial cones, this
thermal analysis involves matched asymptotics instead of
local analysis, although the outer length scale does not
enter explicitly but only through the angle of the cone
due to geometric self-similarity. We use the theory, which
depends on only a single dimensionless parameter Z, to
obtain scaling laws for our computed steady-state tem-
perature profile within the conic nanopore and our con-
ductance enhancement data from experiments. The col-
lapsed experimental and numerical data then offer very
precise estimates of the hot spot features.

Our experiments were done with three kinds of conic
nanopores: single polyethylene terephthalate (PET)
polymer pores from ion track irradiation and asymmet-
ric etching [10], silica nanopipettes with submicron tip
radius and patch pipettes with 1 to 3 micron tip ra-
dius (for cellular patch-clamp experiments) from laser-
assisted pulling. SEM and conductance measurement at
room temperature shows a typical tip radius Rt of 5 nm
for the polymer conic pores and 100 nm for the silica
nanopipettes and 500 nm for patch pipettes. The in-
ner half angle is 2.6±0.15 degrees for our polymer conic
pores, 2.5±0.3 degrees for our nanopipettes and 4.5±0.8
degrees for our patch pipettes. We reduce the surface
charge of the silica pipettes with functionalization by N-
(3-Triethoxysilylpropyl)gluconamide and validated their
low surface charge with ion current rectification measure-
ments [11]. Fabrication procedures and characterization
details are in Supplementary Materials [10, 12–14].



2

(a)

(b)

FIG. 1. (a) Current voltage characteristic curves for polymer
nanopore.The rectification ratio for all data points are below
1.05. (b) Schematic of temperature profile in z direction inside
a cone with different but self-similar temperature profiles in r
direction at two positions on the cone surface.

Fig. 1a shows our measured current-voltage character-
istic curve of a polymer conic nanopore filled with KCl
solutions of different concentration. A roughly quadratic
increase in current is observed with respect to voltage for
both biases and the rectification ratios for all data points
of opposite biases are below 1.05. As surface charge
causes higher rectification as the voltage increases [11],
the conductance enhancement at higher voltages for both
biases must be due to temperature increase inside the
pore caused by Ohmic heating. Note that, at the same
voltage, conductance enhancement is more significant for
higher ionic strength electrolyte, indicating higher tem-
perature increase inside the pore. The conductance en-
hancement is more readily observed if normalized by con-
ductance at low voltage when Ohmic heating effect is
negligible. The normalized conductance versus voltage
for polymer nanopore, nanopipette and patch pipette are
plotted in Fig. 2a.

For a slender cone with a half cone angle of θ, we as-
sume, and check a posteriori, that heat generation in each
cone element is balanced by transverse heat loss through
side walls. Longitudinal heat flux through the tip will
be shown to smaller than the transverse loss through
the side walls by a factor of tan θ � 1, which is small
for a slender cone. Based on Gauss’s law electric field
inside the cone is equal to V zt/z

2 where zt is the dis-
tance from the extrapolated cone apex O to nanopore
tip (see Fig. 1b), V the applied voltage [11]. The heat
generation rate per unit volume is given by σE2, where
σ is conductivity of electrolyte and E is the local elec-
tric field. The electrolyte is at high ionic strength such
that the Debye length is much shorter than the nanopore

radius. Consequently, the conductivity is uniform within
the nanopore. As such, the temperature gradient in polar
direction on the cone surface can be obtained by relating
the heat generation per unit length to the heat loss per

unit length, ∂T
∂r

∣∣
r=zε

− tan θσV 2z2t
2k

1
z3 , where ε = tan θ is a

measure of the slenderness and k is the thermal conduc-
tivity outside the cone. The thermal conductivity k for
polymer nanopore is that of PET 0.15 W m−1 K−1, for
water 0.6 W m−1 K−1 and for silica 1.3 W m−1 K−1[15].
For simplicity, all T represents local temperature differ-
ence with respect to the room temperature. We have also
neglected electro-osmotic flow or any convection effects
on intrapore heat transfer. We have silanized our silica
nanopores to reduce electro-osmotic flow but residue sur-
face charge could still exist on the surface. Some reports
[16] have shown electro-osmotic velocity in silica conic
nanopore that is as high as 0.3m/s because of field focus-
ing. However, even with such a high velocity, we estimate
our thermal Peclet number for water, UR/α to be as low
as 0.1 near the tip and hence convective contribution to
heat transfer within the conic nanopore is negligible.

Outside the cone but still within an inner region close
to the cone, we study the Laplace equation with the
stretched variable ρ = r/εzt so that the polar coordinate
on the cone surface is fixed to be z, where z = z/zt. Us-
ing zt, the longitudinal distance of the tip from the cone
apex as the longitudinal length scale, yields a stretched

Laplace equation for thermal flux 1
ρ
∂
∂ρ

(
ρ∂T∂ρ

)
+ε2 ∂2T

∂z2
= 0

The leading-order solution without longitudinal heat flux
through the solution is then:

T (ρ, z) ∼ T (z) +Q(z)
(

ln
ρ

z

)
, ρ > z (1)

where T (z) is the unknown temperature on the cone sur-
face. The lnρ portion arises from the straight cylinder
limit (ε → 0). The flux on the cone surface is deter-
mined by this term and balancing with the previously
determined Ohmic heat generation rate at every lon-
gitudinal position z allows us to determine the coeffi-

cient Q(z̄). εzt
∂T
∂r

∣∣
r=zε

= ∂T
∂ρ

∣∣∣
ρ=z̄

= Q(z̄)
z̄ . Thus, the

line source strength with dimension of temperature is
Q(z̄) = −TOhm

z̄2 , where TOhm = tan2θσV 2/2k is the char-
acteristic temperature rise from Ohmic heating at the tip.
It corresponds to a virtual sphere at the tip with higher
heat loss than the true slender cone. The temperature
rise TOhm is hence an underestimate of the true tip tem-
perature that needs to be corrected with a slender body
matched asymptotic theory.

Away from the cone, the far-field temperature can
be described by the integral formulation with a convo-
lution integral with the Greens function (single charge
fundamental solution) of the Laplace equation. In the
original coordinates, this integral solution that satis-
fies the far field condition T (r2 + z2 → ∞) = 0 is
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FIG. 2. (a) Measured conductance of a single conic nanopore ion-track PET membrane, charge-free nanopipette and patch
pipette, normalized by the zero-voltage conductance of each experiment, as a function of voltage. A quadratic increase with
respect to voltage is observed, in violation of Ohmic law with constant conductance. (b) Collapsed membrane, nanopipette
and patch pipette data by the scaling theory into a linear correlation with respect to a normalization factor that contains
cone angle θ (2.6, 2.5 and 4.5 degrees for polymer nanopore, nanopipettes and patch pipette respectively), k =0.15 and 0.6
W m−1 K−1 for the PET membrane pore and the silica pipettes, coefficient of temperature-dependent electrical conductivity
m, thermal conductivity outside the cone k, conductivity σ at indicated ionic strength at room temperature and voltage V .
Insets show cavitation in both the nanopore membrane and patch pipette at the corresponding voltages. Cavitating bubbles
is first observed within the patch pipette at some distance from the tip, as shown in the second inset, but will eventually grow
sufficiently to exit the pipette, as is observed at the membrane surface.

T (r, z) = −
∞∫
zt

q(s)ds

4π
√
r2+(z−s)2

. In the limit of vanish-

ing r, where the cone surface is, this integral has a
simple pole at s = z and we can hence approximate
it by choosing a smaller interval of integration about

the pole, r << δ << zt, such that
∞∫
zt

q(s)ds

4π
√
r2+(z−s)2

∼

z+δ∫
z−δ

q(s)ds

4π
√
r2+(z−s)2

=
δ/r∫
−δ/r

q(z+rt)dt

4π
√

1+t2
after a change of vari-

able s = z + rt. Expanding about r = 0 and respecting
the relative scaling between z and r, we obtain

T (r, z) ∼ −q(z)
2π

δ/r∫
0

dt√
1 + t2

∼ −q(z)
2π

ln(2δ/r) (2)

The finite temperature of the integral solution of a fi-
nite cone approaches an asymptote at r=0 that has the
singular limits (at both vanishing r and infinite r) of
an infinite cylinder and z is of the order specified by
δ. This limiting asymptote is of the form in Eq. (1)
and hence allows matching between the two solutions.
One can use the intermediate coordinate of Hinch [7] to
match Eqs. (1) and (2) and relate q(z)/2π to Q(z̄) in
the intermediate region at the surface of the tip where
r = εz ∼ εzt. It is, however, quite obvious by inspection
that T (z) ∼ Q(z)lnε and

T (z) ∼ TH

z2 = −ln(tanθ)
TOhm

z2 (3)

Through matching, the slender body heat loss to the bulk
has introduced a −lnε = −ln(tanθ) correction to the
original characteristic temperature rise TOhm to obtain
a new temperature rise TH with proper respect to the
nearly cylindrical geometry and the lnr fundamental so-
lution.

Although there exists a finite normal gradient at the
cone surface ∂T

∂r

∣∣
r=εz

, the gradient resides in a thin
boundary layer of thickness εR and the temperature is
uniform to leading order within most of the local cross
section of radius R. The temperature drop across this
thin boundary layer is hence small (of order R) com-
pared to the bulk temperature and one can use the value
on the cone surface from Eq. (3) to approximate the
temperature within the conic pore.

The conductivity has a temperature dependence of
σ = (mT (z) + 1)σ0, where the conductivity expansion
coefficient for aqueous electrolyte is m = 0.02K−1 =
1/Tm [17] for water and σ0 has a linear concentration
dependence. The normalized conductance of the cone
can be derived from the integration of the equation:
κ
κ0

=
∫∞

1
1

σ0z2
dz/

∫∞
1

1
σz2

dz. When TH/Tm is small, such
that the conductivity does not increase significantly, the
expression can be simplified as

κ

κ0
= 1 +

TH
3Tm

= 1 + Z (4)

where Z = − ln (tan θ)mtan2θσV 2/6k. Figure 2a shows
experimental data of normalized conductance for poly-
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FIG. 3. Collapse of simulation result of highest temperature
vs. normalized conductance for nanopipette and nanopore
with voltages ranging from 2V to 25V. Rt indicates tip ra-
dius that varies by a factor of 20 from polymer nanopores
to nanopipettes. C indicates molarity of KCl. Contour plots
of the temperature near the tip of nanopipette and polymer
nanopore at 24V are shown in the inset. Room temperature
is 25◦C

mer nanopore, nanopipette and patch pipette showing
varying degrees of enhancement when measured at the
same voltage. Figure 2b shows to collapse data with Eq.
(4).

One of the most important results from the slender
body theory is that it provides a way to estimate the tem-
perature inside the cone from normalized conductance
even with unknown cone angle and thermal conductiv-
ity. Based on Eqs. (3) and (4) the temperature rise

normalized by Tm/(z)
2

for any longitudinal z coordinate
has a universal linear scaling relationship with respect to
the normalized conductance, with a universal slope of 3.
The matched asymptotic analysis breaks down at some
neighborhood of the conic tip, where a significant heat
loss in the longitudinal direction that is not captured in
the current slender body theory dominates. The temper-
ature hence does not increase monotonically towards the
tip z = 1, as predicted by Eq. (3) but exhibits a maxi-
mum at some distance from the tip. Nonetheless, due to
the self-similarity of the conic geometry and the universal
validity of the focused Ohmic heating scaling, we expect
the hot spot location to be universal, and the normal-
ized hot-spot temperature to exhibit the same universal
scaling of 3 with respect to the normalized conductance.

We have numerically solved the steady state inhomo-
geneous heat equation with Ohmic heating source for
polymer nanopores and nanopipettes geometry of differ-
ent cone angles using COMSOL Multiphysics v3.5a. The
temperature dependence of electrical conductivity of elec-
trolyte and all physical parameters used in the simulation
are the same as used in the collapse in Figure 2b. The

simulated data are also collapsed by Eq. (4). The nor-
malized conductance are plotted against maximum tem-
perature rise normalized by Tm/(z)

2
for various conic ge-

ometries in Figure 3. The universal slope is found to be
equal to 3 when z = 1.2, which agrees well with the ac-
tual position of maximum temperature increase from the
simulation results. This empirically established univer-
sality then allows us to predict the hot-spot temperature
from Eq. (3) with z = 1.2.

That the hot-spot length is of order zt, the longitudi-
nal distance of the tip from the cone apex, also allows us
to validate our negligence of the longitudinal heat flux
through the tip. Using the point source solution of the
Laplace equation, the radial heat flux density from tip
scales as k

(
Rt/r

2
)
, where r is the spherical radial coor-

dinate from the tip and Rt is the tip radius. As such, the
total longitudinal thermal diffusive flux into the solution
scales as πkRt/2. Using the line source solution in Eq.
(2), the transverse heat flux through the wall scales as
k(1/r), where r here is the cylindrical radial coordinate
transverse to the cone, and the total transverse flux out
of the wall scales as 2πkzt, using the confirmed longitu-
dinal length scale of the hot spot from Figure 4. Since
Rt/zt = tan θ = ε � 1 for a slender cone, the longitu-
dinal flux into the solution is negligible compared to the
radial flux through the side wall.

FIG. 4. Simulation results of cutoff position for different volt-
ages and cone geometry using a cutoff temperature rise of
15◦C. Theory that does not account for varying conductivity
inside the cone is only valid at low voltage when conductiv-
ity variation throughout the cone is small. Once conductivity
variation is considered, the theory is valid at both high and
low temperature.

After defining an arbitrary cutoff temperature rise
Tc = 15◦C to estimate the dimension of the hot spot, we
find in Figure 4 that the theory estimates the lower tem-
peratures well at low TH , but breaks down at high voltage
or large TH . This error is due to the omission of the non-
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linear conductivity variation in the Ohmic heating of our
theory. A next order correction (in the conductivity in-

crease Z) can be made with E = V zt(1+Z)
z2(1+T (z)/Tm) , where

(1 + Z) accounts for the overall conductivity increase
and (1 + T (z) /Tm) balances the current along the cone
with varying local electrical conductivity. Using the same
asymptotic matching, the expression for the temperature

becomes: T (z) = Tm

(√
4(1+Z)2TH/Tm+z2

2z − 1
2

)
, which

represents a higher order correction to Eq. (3). The po-
sition zc of the cutoff temperature Tc where T (z) = Tc
is then z̄c = (1+Z)√

(1+Tc/Tm)Tc/TH

. This higher order cor-

rection does collapse the large voltage simulation results
in Fig. 4 and offers an estimate of the hot spot dimen-
sion. Using the same cutoff temperature rise of 15◦C, at
low Z (TH/Tm < 1), the thermal hot spot dimension is
quantitatively less than zt, or less than 100 nm for the
membrane nanopore and 2 µm for the nanopipette.
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