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Powerful incoherent laser pulses can propagate in focusing Kerr media much longer distances
than can coherent pulses, due to the fast phase mixing that prevents transverse filamentation. This
distance is limited by 4-wave scattering, which accumulates waves at small transverse wavenum-
bers, where phase mixing is too slow to retain the incoherence and thus prevent the filamentation.
However, we identify how this theoretical limit can be overcome by countering this accumulation
through transverse heating of the pulse by random fluctuations of the refractive index. Thus, the
laser pulse propagation distances are significantly extended, making feasible, in particular, gener-
ation of unprecedentedly intense and powerful short laser pulses in plasma by means of backward
Raman amplification in new random laser regimes.

PACS numbers: 42.65.Sf, 42.65.Jx, 52.35.Mw

Propagation of powerful laser pulses in focusing non-
linear media depends on the competition between the
transverse dispersive spreading and focusing nonlinearity
[1–6]. For negligible nonlinearity, the dispersion would
double the cross section of a coherent pulse of transverse
size L⊥ within the Rayleigh length LR ∼ L2

⊥/λ, where
λ is the laser wavelength. A strong enough nonlinear-
ity would noticeably reduce the pulse cross section, or
even cause transverse filamentation, within the length
LSF ∼ vg/ωnl, where ωnl is the nonlinear frequency shift
and vg is the group velocity of the pulse. For LR < LSF ,
the dispersive spreading outruns the self-focusing and
suppresses it. We will consider focusing Kerr-like media
for which the nonlinear frequency shift is proportional to
the pulse intensity I, namely, ωnl = −αI with the posi-
tive coefficient α > 0. Then, LR/LSF ∼ Pch/Pcr, where
Pch ∼ IL2

⊥ is the coherent pulse power and Pcr ∼ λvg/α
is the critical power of self-focusing.

A coherent laser pulse of power P much greater than
the critical power, P ≫ Pcr, would experience trans-
verse filamentation within a propagation length not much
exceeding the self-focusing length LSF . In contrast to
this, incoherent laser pulses could traverse focusing Kerr-
like media, remaining statistically uniform in the trans-
verse directions, at arbitrarily large powers. What ac-
tually matters for non-filamentation of incoherent pulses
is not the total power P , but the coherent sub-power
Pch ∼ IL2

⊥ located within the transverse correlation
length L⊥. If this sub-power is much smaller than the
critical power, Pch ≪ Pcr, then the Rayleigh length is
much shorter than the self-focusing length, so that non-
linear phase shift accumulated within the Rayleigh length
is small φnl ∼ ωnlLR/vg ∼ Pch/Pcr ≪ 1.

The small parameter Pch/Pcr ≪ 1 enables a kind of
perturbation theory. Physically, this small parameter
implies that the phase mixing of different waves occurs
much faster than the nonlinear interaction. In zero-order
approximation, the phases of different waves are random.
Statistical averaging over nearly random phases leads to

a closed evolution equation for the pair correlation func-
tion of waves. This equation is usually referred to as a
kinetic equation for waves. The pair correlation function
of waves in Wigner representation is usually referred to
as the wave spectral density. In general, the kinetic equa-
tion for waves contains terms linear, quadratic, cubic, etc.
in the wave spectral density.

The linear term describes wave propagation with
group velocities and scattering on inhomogeneities of the
medium. For a pulse with negligible spread of group
velocities in a conservative uniform medium, the wave
spectral density does not change in the reference frame
moving with the group velocity of the pulse.

The quadratic term in kinetic equation for waves gives
linear contribution to the wave spectral density variation
rate. This contribution comes from the statistically aver-
aged nonlinear frequency shift, proportional to the pulse
intensity. The corresponding nonlinear phase shift can
bend phase fronts and cause self-focusing of incoherent
pulses in a way similar to that of coherent pulses. The
evolution of transverse size (radius) of an incoherent laser
pulse within such a model was discussed in many papers
(see, for instance, Refs. [7, 8]). This approximation is
sufficient for Kerr media in which the nonlinear frequency
shift is proportional to the laser field intensity integrated
over time or space, because such an integration effectively
accomplishes statistical averaging (see, for instance, Ref.
[9]). However, for Kerr media of interest here in which
the nonlinear frequency shift is proportional to the laser
field intensity itself, higher order nonlinear processes can
be important.

In fact, the higher order nonlinear processes appear
to be dominant for sufficiently powerful incoherent laser
pulses statistically nearly uniform in the transverse direc-
tions over many correlation lengths L⊥. For statistically
uniform pulses, the averaged nonlinear frequency shift
does not vary in the transverse directions, so that there
is no bending of the phase fronts, and the quadratic term
in the kinetic equation for waves is zero. The dominant
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nonlinear term in the kinetic equation for the waves is
then the cubic term.

More accurately: The cubic term in the kinetic equa-
tion for waves, that gives the quadratic contribution to
the wave spectral density variation rate, contains the
small factor P 2

ch/P
2
cr. The quadratic term in kinetic equa-

tion for waves, that gives the linear contribution to the
wave spectral density variation rate, contains the small
factor fIPch/Pcr, where fI is the small relative varia-
tion of the wave spectral density within the transverse
correlation length L⊥. For smooth wave spectral den-
sity non-modulated in the transverse directions, the typ-
ical fI is about the ratio of L⊥ to the pulse aperture,
fI ∼

√

Pch/P . The cubic process is much faster than
the quadratic process for P ≫ P 2

cr/Pch. Of interest here
are pulses of very high powers P , perhaps exceeding the
critical power Pcr by a factor of a million, while, to secure
the pulse incoherence, the ratio Pcr/Pch needs to be just
somewhat larger than 1. The effect of the quadratic term
in the kinetic equation for the waves on the propagation
of such powerful pulses is then negligible.

The cubic term in kinetic equation for waves is associ-
ated with the 4-wave scattering. The evolution of wave
spectral density due to the 4-wave scattering was subject
to a longstanding theoretical controversy, as recounted
and resolved analytically in Ref. [10]. That analytical
resolution was recently supported numerically [11]. Being
the same for focusing and defocusing Kerr nonlinearities,
the 4-wave kinetic equation cannot produce self-focusing
effects directly. However, it tends to accumulate waves
at small transverse wavenumbers, where phase mixing
is too slow to retain the incoherence. Therefore, the in-
put pulse randomization (that might be arranged, say, by
techniques of the type [12–14]) is not sufficient to achieve
pulse propagation over distances much exceeding the 4-
wave scattering length.

Here we propose to use an ongoing randomization to
prevent wave accumulation at small transverse wavenum-
bers, thus extending the propagation of powerful laser
pulses in focusing Kerr media much beyond the known
theoretical limit [10]. The ongoing randomization can be
accomplished through the natural ray diffusion in media
with random fluctuations of the refractive index. The
substantially extended propagation lengths could make
feasible a new class of random lasers [15–17], based on
backward Raman amplification [18–22] and capable of
reaching relativistic non-focused intensities in plasmas.
This would exploit random density fluctuation inherently
present in plasmas and hitherto considered harmful to the
backward Raman amplification.

Since the wave spectral density variation rate, associ-
ated with the 4-wave scattering, contains the small factor
P 2
ch/P

2
cr compared to the rate of phase mixing, the inverse

length of 4-wave scattering is

L−1

4w ∼ L−1

R P 2

ch

/

P 2

cr ∼ LR

/

L2

SF . (1)

The 4-wave scattering of two waves with transverse
wavenumbers k⊥ ∼ 2π/L⊥ into two new waves typically
produces a wave of larger transverse wavenumber along
with a wave of smaller transverse wavenumber. Further
4-wave scattering produces waves of even larger trans-
verse wavenumbers, so that the wave distribution spreads
over a circle of growing radius k⊥M in the k⊥-plane. At
the same time, the number of waves with small k⊥ in-
creases. For smaller k⊥, the 4-wave scattering is faster
L−1

4w ∝ LR ∝ L2

⊥ ∝ k−2

⊥ , and it tends to establish the
wave spectral density close to the equilibrium Rayleigh-
Jeans distribution inside the circle k⊥ . k⊥M :

Nk⊥
≈ T (Λk⊥

)

k2⊥ + k2⊥m

, Λk⊥
= ln

(

1 +
k2⊥
k2⊥m

)

. (2)

Here k2⊥m is the “chemical potential” and T (Λk⊥
) is

the “local temperature” which can logarithmic-slowly de-
pend on k⊥ to provide nonzero fluxes across the spec-
trum. This multi-scale distribution has roughly Λk⊥M

different populated scales each of which carries just a
small fraction of total pulse intensity I. Such an opti-
cal turbulence does not satisfy the classical Kolmogorov
hypothesis of spectral locality of interactions. There is,
however, a more general kind of locality [10] that enables
expressing k⊥-integrals in the 4-wave kinetic equation by
explicit formulas local in k⊥, so that Eq. (1) is modified
for the multi-scale spectrum as follows:

L−1

4wk⊥
∼ f ′(Λk⊥

)f(Λk⊥
)LRk⊥

/

L2

SF (3)

f(Λk⊥
) =

∫

ξ.Λk
⊥

T (ξ)dξ

/

∫

ξ.Λk
⊥M

T (ξ)dξ .

Here fk⊥
is the fraction of pulse intensity carried by waves

with transverse wave-numbers not exceeding k⊥. A sim-
plified explanation of the factor f ′f entering here is that,
being quadratic in the wave intensity, the rate of 4-wave
scattering contains the product of two wave intensities;
one of the contributing waves has wavenumber about k⊥,
and thus carries the intensity ∼ f ′(Λk⊥

)I, while the sec-
ond wave may have any wavenumber smaller than k⊥,
and thus carries the intensity ∼ f(Λk⊥

)I. Therefore, the
rate of 4-wave scattering is modified by the factor ∼ f ′f .
The 4-wave scattering inverse length L−1

4wk⊥
relates to its

initial value L−1

40
as

L40

L4wk⊥

∼ I2

I2
0

k2⊥0

k2⊥
f ′(Λk⊥

)f(Λk⊥
) , L40 ∼ L2

SF0

LRk⊥0

. (4)

The applicability condition of random phase approx-
imation, L−1

4wk⊥
< L−1

Rk⊥
, is the most restrictive at

k⊥ ∼ k⊥m. There f(Λk⊥m
) ∼ f ′(Λk⊥m

) and L−1

4wk⊥m
∼

f ′2(Λk⊥m
)LRk⊥m

/L2
SF , so that the applicability condi-

tion reduces to f ′(Λk⊥m
)LRk⊥m

/LSF < 1. It simply
means that the Rayleigh length of waves with k⊥ ∼ k⊥m

must be shorter than the self-focusing length of these
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waves themselves, regardless to other parts of the spec-
trum. This can be rewritten in the form

f ′(Λk⊥m
)(k2⊥0/k

2

⊥m)(I/I0) < Pcr/Pch0 . (5)

The growth of k2⊥M is described by the equation

dk2⊥M

dz
∼ k2⊥M

L4wk⊥M

∼ I2

I2
0

k2⊥0

L40

f ′(Λk⊥M ) . (6)

As long as other effects do not cause fluxes, the 4-
wave scattering establishes nearly the same “local tem-
perature” across the spectrum, T (Λk⊥

) ≈ T (Λk⊥M
) =

T . It follows then f ′(Λk⊥
) ≈ 1/Λk⊥M

and f(Λk⊥
) ≈

Λk⊥
/Λk⊥M

. The intensity I may change due to the longi-
tudinal stretching/contraction, or pumping/damping of
the pulse. Even absent the group velocity dispersion
and pumping/damping, the short pulse duration may be
strongly affected by small non-paraxial corrections to the
longitudinal component of group velocity vg‖. The rela-
tive reduction of vg‖, δvg‖/vg‖ ≈ k2⊥/(2k

2

‖), is the largest
for waves with k⊥ ∼ k⊥M . It may cause pulse stretch-
ing δL ∼ zk2⊥M/(2k2‖), which can be neglected only for
pulses of sufficiently large length L,

L > zk2⊥M/(2k2‖) . (7)

Consider, first, regimes with I ∼ I0. Since I =
∫

dk⊥Nk⊥
∼ TΛk⊥M

, it follows T ∼ I0/Λk⊥M
. The 4-

wave scattering itself conserves also the “transverse en-
ergy” E⊥ =

∫

dk⊥Nk⊥
k2⊥. The major contribution to

this integral comes from waves with k⊥ ∼ k⊥M , so that
E⊥ ∼ k2⊥MT ∼ I0k

2

⊥M/Λk⊥M
. As long as E⊥ is con-

served, it follows Λk⊥M
∼ k2⊥M/k2⊥0

. Eq. (6) gives then
k4⊥M/k4⊥0

∼ 2z/L40, so that

ln
(

k2⊥M/k2⊥m

)

≈ Λk⊥M
∼ k2⊥M/k2⊥0 ∼ (2z/L40)

1/2 . (8)

The applicability condition (5) takes now the form

Λk⊥M
< Λ∗ , exp(Λ∗)/Λ

2

∗ ∼ Pcr/Pch0 . (9)

It can be satisfied only up to z not much exceeding
L40, namely z < z∗ ∼ L40Λ

2
∗/2. To overcome this

previous theoretical limit [10], the ray diffusion on the
medium inhomogeneities should stop the exponential de-
crease of k⊥m before the condition (9) is violated. Dif-
fusion spreads the ray transverse wave-vectors according
to (δk⊥)

2 = Dz. It starts affecting the previous regime
when (δk⊥) matches k⊥m. This occurs at Λk⊥M

= ΛD,
such that ΛD exp(ΛD) ∼ 2k2⊥0

L−1

40
/D . The applicability

condition (9) is satisfied for

D > D∗ ∼ 2k2⊥0L
−1

40
Λ−1

∗ exp(−Λ∗) . (10)

For such D, condensate does not form, rather k2⊥m passes
the minimum DzD at zD ∼ L40Λ

2
D/2 < z∗, and then

grows at z > zD according to

k2⊥m ∼ Dz . (11)

This increases the “local temperature” at k⊥ ∼ k⊥m,
but the increase is quickly saturated by the faster 4-wave
scattering which produces a flux of waves towards larger
k⊥ up to k⊥M . As a result, a fixed profile of the “local
temperature” T (Λk⊥

) sets across the spectrum. The en-
tire spectrum evolves then in self-similar way, as a func-
tion of just k⊥/k⊥m ∝ k⊥/

√
z, rather than k⊥ and z sep-

arately. It implies L4wk⊥
∼ z ∝ k2⊥ across the spectrum,

which, according to (4), means f ′(Λk⊥
)f(Λk⊥

) = const.
The solution of this equation is

f(Λk⊥
) ≈ Λ

1/2
k⊥

Λ
−1/2
k⊥M

. (12)

Integration of (6) gives

k2⊥M/k2⊥0 ∼ Λ−1

k⊥M
z/L40 , Λk⊥M

≈ ΛD . (13)

This regime extends until the applicability condition (7)
is violated and the longitudinal stretching of the pulse
becomes important. At larger z, the pulse intensity de-
creases due to the longitudinal stretching, but the fluence
w = IL does not change, absent pumping/damping. The
stretching is described by the equation

dL/dz ∼ k2⊥M/(2k2‖) . (14)

Though the stretching is mainly due to the waves with
k⊥ ∼ k⊥M trailing, the 4-wave scattering quickly sets
nearly the same transverse spectrum at all cross sections
within the pulse length. Therefore, formula (12) remains
valid. The variation of k2⊥M is described by (6). For a
fixed fluence w, the relative variation of k2⊥M is small,
so that the stretching proceeds linearly L ∝ z. For a
fixed pumping, the fluence grows linearly w ∝ z, which
gives L ∝ z4/3 and k2⊥M ∝ z1/3. Waves with k⊥ ∼ k⊥M

are not directly affected by the ray diffusion, so that the
spectrum remains dominated by the 4-wave scattering
and multi-scale, as long as k2⊥M > Dz. When this condi-
tion is violated, the 4-wave scattering becomes relatively
small and the propagation regime becomes nearly linear.
Consider now calculation of the ray diffusion coeffi-

cient D for a medium with statistically uniform random
inhomogeneities of the refractive index having typical
relative amplitude of fluctuations fr, transverse corre-
lation length L⊥r, and longitudinal correlation length
L‖r. Let the group and phase velocities of the laser
pulse be comparable. Then, according to the Hamil-
ton equations for rays, the transverse wavenumber typi-
cally changes, during the ray passing a single fluctuation,
by δk⊥ ∼ k‖frL‖r/L⊥r, for not too small aspect ratio
L⊥r/L‖r & k⊥/k‖. The respective diffusion coefficient is

D ∼ δk2⊥/L‖r ∼ k2‖f
2

rL‖r/L
2

⊥r . (15)

To prevent Bose-Einstein condensation, this diffusion co-
efficient should exceed the threshold D∗. The fluctuation
amplitude needed is then

fr > fr∗ ∼ L⊥rk⊥0

√
2 exp(−Λ∗/2)

k‖
√

L‖rL40Λ∗

. (16)
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In particular, for a plasma with fluctuations of elec-
tron concentration δn and plasma-to-laser frequency ra-
tio fe = ωe/ω = λ/λe ≪ 1 (where λe = 2πc/ωe), the re-
fractive index fluctuation amplitude is fr = f2

e δn/(2n0).
The fluctuations δn needed to prevent Bose-Einstein con-
densate formation is then

δn

n0

>
δn∗

n0

∼ L⊥rλ
2
e(2Λ∗)

3/2 exp(−3Λ∗/2)

(L‖rλ)1/2L
2

⊥0

. (17)

Introducing such fluctuations is key to extending the
laser propagation in plasma, making possible amplifica-
tion of short laser pulses to unprecedented fluences. The
pulses of durations too short to noticeably move ions, or
to heat plasma, can be amplified to ultrahigh intensities,
since the ponderomotive and thermal nonlinearities, lead-
ing to self-focusing and filamentation, do not develop.
What limits the propagation and amplification of such
short pulses in plasma is the relativistic electron nonlin-
earity which comes from the electron mass dependence
of the electron quiver velocity, me = m/

√

1− v2/c2 ≈
m

(

1 + 0.5v2/c2
)

. The normalized quiver energy, aver-

aged over the laser period, v2/c2 can be expressed in the
terms of laser intensity I as v2/c2 = 4πe2I/(m2c3ω2) .
The laser frequency shift due to the relativistic elec-
tron nonlinearity is ωnl ≈ −v2ω2

e/(4c
2ω) = −αI , α =

πe2ω2

e/(m
2c3ω3) = e2λ3/(2m2c4λ2

e) . The critical self-
focusing power is then

Pcr ∼ λvg/α ≈ Pλ2

e/λ
2, P = 2m2c5/e2 ≈ 17GW, (18)

which well agrees with the standard value of Pcr for ax-
isymmetric laser pulses in plasma [23–25].

The relativistic electron nonlinearity limits the classi-
cal π-pulse regime of backward Raman amplification in
plasma [20, 21, 26–29], during which the pulse amplitude
grows proportionally to z and the pulse length contracts
inversely. This ends when the self-focusing length, de-
creasing in the π-pulse regime like z−2, matches z. Then
the leading spike growth saturates and the transverse fil-
amentation instability becomes dangerous. High-quality
coherent pulses may propagate somewhat further with-
out the filamentation, but no more than a few times
this distance, until the filamentation instability will make
enough exponentiations to grow from small initial imper-
fections of wave fronts. Such a modestly extended prop-
agation allows to amplify coherent pulses to higher flu-
ences if not intensities [28]. However, incoherent pulses
can propagate much longer distances, remaining statis-
tically uniform in the transverse directions. Since wave
fronts of incoherent pulses are not smooth at all, the fila-
mentation instability must be suppressed even before the
leading amplified spike saturates at the intensity [27]

I0 ≈ P
λeλ

(

Ip0
Ibr

)2/3

, Ibr =
πPλ

32λ3
e

. (19)

Here Ip0 is the incident pump pulse intensity, and Ibr is its
value at which wavebreaking occurs of the resonant Lang-
muir wave mediating energy transfer from the pump to
the amplified pulse; it is assumed Ibr > Ip0, because the
energy transfer efficiency significantly drops at Ibr ≪ Ip0
[20, 26, 30, 31]. As seen from (19), the energy com-
pression ratio is I0/Ip0 ≈ 10(Ibr/Ip0)

1/3λ2
e/λ

2 > 1000,
for λe/λ > 10. This is also the ratio of the consumed
pump length 2z0 to the compressed pulse length L0 ∼ λe.
Within the propagation length z0, the pulse longitudi-
nal stretching due to the finite angular spread is δL0 ∼
z0λ

2/(2L2
⊥0

). Since z0 ∼ L0I0/Ip0 and L−2

⊥0
∼ I0/Pch0,

it follows δL0/L0 ∼ 5Pcrλ/(2Pch0λe) (Ip0/Ibr)
1/3. For

Pch0/Pcr > 5λ/(2λe) (Ip0/Ibr)
1/3, this stretching is

small, so that the π-pulse stage is not much affected
by the finite angular spread. Substitution of L−2

⊥0
∼

Ip0/Pch0 ∼ λλ−3
e (Ip0/Ibr)

2/3Pcr/Pch0 into (17), and us-
ing (9) to express Pcr/Pch0 in the terms of Λ∗ gives

δn

n0

>
δn∗

n0

∼ 23/2 exp(−Λ∗/2)L⊥rλ
1/2

Λ
1/2
∗ L

1/2
‖r λe

(

Ip0
Ibr

)2/3

. (20)

If, for example, L‖r = L⊥r = λe = 25λ, and Ip0 ∼ Ibr,
then δn∗/n0 ∼ 15% for Λ∗ = 2, δn∗/n0 ∼ 4% for Λ∗ = 4,
and δn∗/n0 ∼ 1% for Λ∗ = 6. For λ = 0.3µm, the
intensity I0 is I0 ≈ 0.8 × 1018W/cm2, and the plasma
concentration is n0 = πmc2(eλe)

−2 ≈ 2 × 1019 cm−3.
Such plasma might be produced by ionization of dense
aerosols with the droplets as small as a few microns [32,
33].
With the filamentation instability suppressed by the

pulse incoherence, the backward Raman amplification
can proceed over much larger distances and produce
pulses of much higher fluences, if not intensities, than
thought earlier. The high-energy output can be con-
verted into an unprecedentedly intense and well-focused
coherent laser pulse by means of the backward Raman
amplification in a thin dense plasma layer, as described
in the two-step scheme [22]. The 1st step output is used
as the pump at the 2nd step. The transverse filamenta-
tion instability of coherent amplified pulse does not pose
a serious problem at the 2nd step, because of the plasma
short length and high density.
In summary, the key findings here are: one, powerful

laser pulse scattering on random fluctuations of the re-
fractive index suppresses the transverse filamentation in-
stability and enables propagation distances significantly
exceeding the previous theoretical limit in focusing Kerr
media; and, two, this scattering may now be used to over-
come the transverse filamentation instability, the hith-
erto key limitation to producing laser pulses of unprece-
dented high intensities and powers through the backward
Raman amplification in plasma.
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