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How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear
structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive,
the full story is more complex and interesting. In this work we present numerical evidence from ab
initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature
transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte
Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons
and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of
alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear
liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-
alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This
insight should be useful in improving calculations of nuclear structure and important astrophysical
reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure
of alpha cluster states such as the Hoyle state [1–6] responsible for the production of carbon in red
giant stars and point to a connection between nuclear states and the universal physics of bosons at
large scattering length [7, 8].

PACS numbers: 21.60.De, 21.10.Dr, 21.30.-x, 13.75.Cs, 67.10.Ba, 67.85.Jk

There have been significant recent advances in ab ini-
tio nuclear structure theory using a variety of different
methods [9–15]. Much of the progress has been driven
by computational advances, but we also have a better
conceptual understanding of how nuclear forces impact
nuclear structure. A key tool in making this connec-
tion is chiral effective field theory, which organizes the
low-energy nuclear interactions of protons and neutrons
according to powers of momenta and factors of the pion
mass. The most important interactions are included at
leading order (LO), the next largest contributions appear
at next-to-leading order (NLO), and then next-to-next-
to-leading order (NNLO) and so on. See Ref. [16] for a
recent review of chiral effective field theory. While the
progress in ab initio nuclear theory has been impressive,
there are gaps in our understanding of the connection
between nuclear forces and nuclear structure. In this let-
ter we discover an unexpected twist in the story of how
nucleons self-assemble into nuclei. In order to make our
calculations transparent and reproducible by others, we
remove all non-essential complications from our discus-
sion. For this purpose, we present lattice Monte Carlo
simulation results using lattice interactions at LO in chi-
ral effective field theory, together with Coulomb inter-
actions between protons. In the lattice calculations dis-
cussed here we use a spatial lattice spacing of 1.97 fm

and time lattice spacing of 1.32 fm. We are using nat-
ural units where the reduced Planck constant ~ and the
speed of light c equal 1.

Our starting point is two lattice interactions A and B
at leading order in chiral effective field theory which are
by design similar to each other and tuned to experimental
low-energy nucleon-nucleon scattering phase shifts. The
details of these interactions and scattering phase shifts
are presented in Supplemental Materials at [URL will
be inserted by publisher], but we note some important
points here. The interactions appear at LO in chiral
effective field theory and consist of short-range interac-
tions as well as the potential energy due to the exchange
of a pion. As the short-range interactions are not truly
point-like, they are actually what we call improved LO
interactions. We write the nucleon-nucleon interactions
as VA(r′, r) and VB(r′, r), where r is the spatial separa-
tion of the two incoming nucleons and r′ is the spatial
separation of the two outgoing nucleons. The short-range
interactions in VA(r′, r) consist of nonlocal terms, which
means that r′ and r are in general different. In contrast,
the short-range interactions in VB(r′, r) include nonlocal
terms and also local terms where r′ and r are fixed to be
equal. The main difference between interactions A and
B is the degree of locality of the short-range interactions.
Another difference is that there are extra parameters con-
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tained in interaction B, and these are used to reproduce
S-wave scattering for two alpha particles.

We have used auxiliary-field Monte Carlo simulations
to calculate nuclear ground state energies. In Table I we
present the ground state energies of 3H, 3He, 4He, 8Be,
12C, 16O, 20Ne for interactions A and B. While we use the
notation meant for bound nuclei, in some cases the nu-
clear ground state is an unbound continuum state in our
finite periodic box. We do not stabilize against decay to
alpha particles. In fact, for the case of interaction A, all of
the ground states in Table 1 are multi-alpha states. De-
tails about the size of the box and the initial states used
in the Monte Carlo simulations are provided in Supple-
mental Materials at [URL will be inserted by publisher].
The nuclei 4He, 8Be, 12C, 16O, 20Ne are alpha-like nuclei
with even and equal numbers of protons and neutrons.
We show results at leading order (LO) and leading or-
der with Coulomb interactions between protons (LO +
Coulomb), as well as the comparison with experimental
data. All energies are in units of MeV. The lattice vol-
ume is taken large enough so that the finite-volume en-
ergy correction is less than 1% in relative error. The LO
+ Coulomb results for interaction B are in good agree-
ment with experimental results, better overall than the
NNLO results in Ref. [11]. However there is significant
underbinding for interaction A with increasing nucleon
number. For interaction A, it is illuminating to com-
pute the ratio of the LO energy for each of the alpha-like
nuclei to that of the alpha particle. For 8Be the ratio is
1.997(6), for 12C the ratio is 3.00(1), for 16O it is 4.00(2),
and for 20Ne we have 5.03(3). These simple integer ra-
tios indicate that the ground state for interaction A in
each case is a weakly-interacting Bose gas of alpha parti-
cles. This interpretation is also confirmed by calculations
of two-nucleon spatial correlations and local four-nucleon
correlations.

To understand how interactions A and B can produce
such completely different physics, we show their alpha-
alpha S-wave phase shifts in Fig. 1. The LO results
for interaction A are shown with green triangles, LO +
Coulomb results for A are orange diamonds, LO results
for B are blue circles, and LO + Coulomb results for B
are red squares. The experimental data are shown with
black asterisks [17]. The phase shifts are computed using
auxiliary-field Monte Carlo simulations and a technique
called the adiabatic projection method [18]. Interaction
B was tuned to the nucleon-nucleon phase shifts and the
alpha-alpha S-wave phase shifts, and so the agreement
with experimental data is very good. However the phase
shifts for interaction A are small and even negative at
larger energies. This would explain the large differences
between interactions A and B for the energies of the
larger alpha-like nuclei in Table I.

What we have discovered is that alpha-alpha scattering
is very sensitive to the degree of locality of the nucleon-
nucleon lattice interactions. In Supplemental Materials

FIG. 1: Alpha-alpha S-wave scattering. We plot S-wave
phase shifts δ0 for alpha-alpha scattering for interactions A
and B versus laboratory energy. We show LO results for in-
teraction A (green triangles), LO + Coulomb for A (orange
diamonds), LO results for B (blue circles), and LO + Coulomb
results for B (red squares). The phase shift analysis of exper-
imental data are shown with black asterisks [17]. The theo-
retical error bars indicate one standard deviation uncertainty
due to Monte Carlo errors and the extrapolation to infinite
number of time steps.
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at [URL will be inserted by publisher] we show that this
dependence on degree of locality is due to the compact-
ness of the alpha-particle wave function. In contrast,
the nucleon-nucleon scattering phase shifts make no con-
straint on the degree of locality of the nucleon-nucleon
interactions. For example, if one starts with a purely lo-
cal interaction, a unitary transformation can be used to
define a new interaction which is highly nonlocal but hav-
ing exactly the same phase shifts. The differences only
become apparent in systems with more than two nucleons
and can be understood as arising from three-body and
higher-body interactions [19, 20]. Interaction A is a per-
fectly valid starting point for describing nucleon-nucleon
interactions. However, substantial higher-nucleon inter-
actions will be needed to rectify the missing strength of
the alpha-alpha interactions and the additional binding
energy in nuclei.

The results we have found here suggests a strategy
for improving future ab initio nuclear structure and re-
action calculations by incorporating low-energy light-
nucleus scattering data in addition to nucleon-nucleon
scattering data. This would be especially important for
accurate calculations of key alpha capture reactions rel-
evant to astrophysics such as alpha capture on 12C [21].
One can view the extra step of fixing the degree of lo-
cality of the nucleon-nucleon interaction as preemptively
reducing the importance of the required three-body and
higher-body interactions. It is similar in spirit to other



3

TABLE I: Ground state energies of 3H, 3He, 4He, 8Be, 12C, 16O, 20Ne for interactions A and B. We show LO results, LO +
Coulomb results, and experimental data. All energies are in units of MeV. The error bars denote one standard deviation errors.

Nucleus A (LO) B (LO) A (LO + Coulomb) B (LO + Coulomb) Experiment
3H −7.82(5) −7.78(12) −7.82(5) −7.78(12) −8.482
3He −7.82(5) −7.78(12) −7.08(5) −7.09(12) −7.718
4He −29.36(4) −29.19(6) −28.62(4) −28.45(6) −28.296
8Be −58.61(14) −59.73(6) −56.51(14) −57.29(7) −56.591
12C −88.2(3) −95.0(5) −84.0(3) −89.9(5) −92.162
16O −117.5(6) −135.4(7) −110.5(6) −126.0(7) −127.619
20Ne −148(1) −178(1) −137(1) −164(1) −160.645

approaches that use nuclear structure and many-body
observables to help determine the nucleon-nucleon inter-
actions [15, 22, 23].

Since alpha-alpha scattering is a difficult and
computationally-intensive ab initio calculation, it is use-
ful to discuss a simple qualitative picture of the alpha-
alpha interaction in a tight-binding approximation. For
any nucleon-nucleon interaction V (r′, r), we define the
tight-binding potential, VTB(r), as the contribution that
V (r′, r) makes to the effective interaction between al-
pha particles in the tight-binding approximation where
the alpha particle radius Rα is treated as a small but
non-vanishing length scale. In this simple approximation
the interaction V (r′, r) contributes to the effective alpha-
alpha interaction only in two possible ways. The first is
what we call the direct term where |r′ − r| . Rα, and
the second is the exchange term where |r′ + r| . Rα.
All other terms are forbidden because the interaction is
moving the nucleons to locations where there are no alpha
particles. For the LO lattice interactions we consider here
at lattice spacing 1.97 fm, we do not attempt to resolve
the different microscopic mechanisms that can contribute
to VTB(r). However calculations at smaller lattice spac-
ings would find that the two-pion exchange interaction
is responsible for a large attractive tight-binding poten-
tial at NNLO [16]. This observation connects well with
the work of Ref. [24], which considered the role of the
two-pion exchange interaction in an effective field theory
where alpha particles are treated as fundamental objects.

In Fig. 2 we show the tight-binding potential for the
LO lattice interactions for A and B. For our lattice cal-
culations where space is discrete, we find that Rα is
less than one lattice spacing and so the dependence on
Rα drops out. We see that interaction A has a very
small tight-binding potential. This is consistent with the
weak alpha-alpha S-wave interactions found in Fig. 1. In
contrast, interaction B has a stronger attractive tight-
binding potential resulting from its short-range spin-
isospin-independent local interaction. For comparison
we also show in Fig. 2 the tight-binding potential for
the leading-order interaction used in prior lattice calcu-
lations, which we call interaction C [11, 18].

In order to discuss the many-body limit, we switch
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FIG. 2: Tight-binding potential. We plot the tight-binding
potential versus radial distance for the LO interactions for A,
B, and C, where C is the interaction used in several previous
lattice calculations [11, 18]. Interaction A is shown with blue
squares and solid line, B is drawn with red crosses and dashed
line, and C is presented with orange circles and short-dashed
line.

off the Coulomb interactions and define a one-parameter
family of interactions, Vλ = (1− λ)VA + λVB. While the
properties of the two, three, and four nucleon systems
vary only slightly with λ, the many-body ground state of
Vλ undergoes a quantum phase transition from a Bose-
condensed gas to a nuclear liquid.

We sketch the zero temperature phase diagram in
Fig. 3. The phase transition occurs when the alpha-alpha
S-wave scattering length aαα crosses zero, and the Bose
gas collapses due to the attractive interactions [25, 26].
At slightly larger λ, finite alpha-like nuclei also become
bound, starting with the largest nuclei first. The last
alpha-like nucleus to be bound is 8Be at the so-called
unitarity point where |aαα| = ∞. Superimposed on the
phase diagram, we have sketched the alpha-like nuclear
ground state energies EA for A nucleons up to A = 20 rel-
ative to the corresponding multi-alpha threshold EαA/4.
Empirically we find that the quantum phase transition
occurs at the point λ∞ = 0.0(1). The uncertainty of
±0.1 is due to the energy levels having a slow depen-
dence on λ near λ = 0.0. Since any Vλ represents a
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seemingly reasonable starting point for the effective field
theory at LO, one may end up crossing the phase tran-
sition when considering higher-order effects beyond LO.
It is in this sense that we say nature is near a quantum
phase transition.

The critical point for the binding of 20Ne occurs at
λ20 = 0.2(1). For the binding of the other alpha nuclei,
we obtain λ16 = 0.2(1) for 16O, λ12 = 0.3(1) for 12C,
and λ8 = 0.7(1) for 8Be. One finds a sudden change in
the nucleon-nucleon density correlations at long distances
as λ crosses the critical point, going from a continuum
state to a self-bound system. As λ increases further be-
yond this critical value, the nucleus becomes more tightly
bound, gradually losing its alpha cluster substructure
and becoming more like a nuclear liquid droplet. The
quantum phase transition at λ∞ = 0.0(1) is the corre-
sponding phenomenon in the many-body system, a first-
order phase transition occurring for infinite matter.

FIG. 3: Zero-temperature phase diagram. We show the zero-
temperature phase diagram as a function of the parameter λ
in the interaction Vλ = (1 − λ)VA + λVB without Coulomb
included. The blue filled circles indicate neutrons, the red
filled circles indicate protons, and the small arrows attached
to the circles indicate spin direction. We show a first-order
quantum phase transition from a Bose gas to nuclear liquid
at the point where the scattering length aαα crosses zero. We
have also plotted the alpha-like nuclear ground state energies
EA for A nucleons up to A = 20 relative to the corresponding
multi-alpha threshold EαA/4. The last alpha-like nucleus to
be bound is 8Be at the unitarity point where |aαα| =∞.
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By adjusting λ in ab initio calculations, we have a new
tool for studying alpha cluster states such as the Hoyle
state of 12C and possible rotational excitations of the
Hoyle state [1–6]. By tuning λ to the unitarity point
|aαα| =∞, we can continuously connect the Hoyle state
wave function without Coulomb interactions to a univer-
sal Efimov trimer [7, 8, 27]. An Efimov trimer is one of
an infinite tower of three-body states for bosons in the
large scattering-length limit, with intriguing mathemat-
ical properties such as fractal-like discrete scale invari-

ance. Another interesting system is the second 0+ state
of 16O [28], which should be continuously connected to a
universal Efimov tetramer [27, 29, 30]. This connection
to Efimov states is now being investigated in follow-up
work. The ability to tune the energies of alpha cluster
states relative to alpha-separation thresholds provides a
new window on wave functions and rotational excitations
of alpha cluster states. By studying the λ-dependence of
nuclear energy levels one can also identify the underlying
cluster substructure. For example, the energy of a nu-
clear state which is a weakly-bound collection of four al-
pha clusters will track closely with the four-alpha thresh-
old 4E4He as a function of λ, while a state which is com-
prised of 12C and 4He clusters will track more closely with
E12C + E4He. Such an analysis may provide a new theo-
retical foundation for understanding clustering in nuclei
and complement existing work on clustering in the liter-
ature [31–36], thereby strengthening the theoretical mo-
tivation for experimental searches of alpha cluster states
in alpha-like nuclei.
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Rev. Lett. 87, 192501 (2001), nucl-th/0110014.

[37] See Supplemental Material [URL will be inserted by pub-
lisher] which includes the additional Refs. [38-57].

[38] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur.
Phys. J. A45, 335 (2010), arXiv:1003.5697 [nucl-th].

[39] N. Klein, D. Lee, W. Liu, and U.-G. Meißner, Phys. Lett.
B747, 511 (2015), 1505.07000.

[40] J. Carlson, V. Pandharipande, and R. Wiringa,
Nucl. Phys. A 424, 47 (1984), ISSN 0375-
9474, URL http://www.sciencedirect.com/science/

article/pii/0375947484901271.
[41] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G.

Meißner, Eur. Phys. J. A34, 185 (2007), arXiv:0708.1780
[nucl-th].

[42] B.-N. Lu, T. A. Lähde, D. Lee, and U.-G. Meißner (2015),
1506.05652.

[43] V. G. J. Stoks, R. A. M. Kompl, M. C. M. Rentmeester,
and J. J. de Swart, Phys. Rev. C48, 792 (1993).

[44] E. Wigner, Phys. Rev. 51, 106 (1937).
[45] J.-W. Chen, D. Lee, and T. Schäfer, Phys. Rev. Lett. 93,
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