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A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large
scales. Breaking this assumption leads to a set of solutions to Einstein’s field equations, known as Bianchi
cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all
degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background
temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain
a limit on the anisotropic expansion of (σV/H)0 < 4.7 × 10−11 (95% CI), which is an order of magnitude
tighter than previous Planck results that used CMB temperature only. We also place upper limits on other
modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σT,reg/H)0 <
1.0 × 10−6 (95% CI). Including all degrees of freedom simultaneously for the first time, anisotropic expansion
of the Universe is strongly disfavoured, with odds of 121,000:1 against.

The standard ΛCDM model of cosmology assumes the
Copernican principle, which states that the Universe is
isotropic and homogeneous on large scales. In this work, we
test whether the expansion of the universe is indeed isotropic,
using cosmic microwave background (CMB) data from the
Planck satellite.

Assuming homogeneity and isotropy, the solutions to Ein-
stein’s field equations are given by the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) metric. Relaxing the isotropy re-
quirement while continuing to demand homogeneity leads in-
stead to Bianchi metrics [1, 2]. The anisotropic expansion in
these models imprints a signal in the CMB since photons red-
shift at different rates depending on their direction of travel
[3, 4], an effect known as shear. The CMB can therefore be
used to place limits on anisotropic expansion, although to do
so the geometric signal must be disentangled from the stochas-
tic fluctuations responsible for structure formation.

Before the temperature fluctuations of the CMB had been
characterized, it was possible to place preliminary upper lim-
its on the magnitude of anisotropy [5, 6]. Later tests for
anisotropic expansion (see, e.g., Refs. [7–13]) focussed on
vorticity (i.e., universal rotation) and thus tested only some
of the ways in which the Universe can be anisotropic. In this
Letter, we carry out the first general test using all shear de-
grees of freedom and the widest possible range of geometric
configurations that describe anisotropy. We incorporate polar-
ization data (as well as temperature) in the statistical analysis
for the first time. This enables us to obtain order-of-magnitude
tighter constraints on vorticity than previously obtained using
Planck data. The large number of physical and nuisance pa-
rameters necessary for a full exploration requires us to develop
a new sampling package, ANICOSMO2, based on PolyChord
[14, 15]. Together, these developments allow us to perform
the first general test of isotropic expansion by constraining
the full set of Bianchi degrees of freedom with CMB data.
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Anisotropic models: Departures from isotropy that pre-
serve homogeneity are described by Bianchi models, which
can be subdivided into a number of “types” describing the
overall geometry of space. One may show [16] that only cer-
tain types allow for an isotropic limit (specifically, types I and
VII0, V and VIIh, and IX contain flat, open and closed FLRW
universes, respectively). Among these, all but the closed mod-
els can be obtained from limits of the Bianchi VIIh case [4].
The closed case induces only a quadrupole in the CMB tem-
perature and polarization and, consequently, is difficult to con-
strain. In this work, we therefore consider the most general
Bianchi VIIh freedom — including its sub-types VII0, V and
I — allowing us to test for the most general departure from
isotropy that retains homogeneity within a flat or open Uni-
verse.

In all Bianchi types, anisotropy is quantified in terms of the
shear tensor σµν, which describes the deformation that a fluid
element in the Universe undergoes as a result of anisotropic
expansion. For small deviations from isotropy, the full shear
freedom can be expressed as a set of five non-interacting
modes that behave like scalars (S), vectors (V) or tensors
(T) under rotations around a preferred axis of the Bianchi
model [17, 18]. Only vector modes, which generate vorticity,
have previously been confronted with Planck data [12, 13].

We model the energy content of the Universe as the sum of
perfect fluids corresponding to matter, radiation and dark en-
ergy. The Einstein equations then dictate the evolution of the
scalar, vector and tensor shear components. We consistently
include the fluid motion relative to the comoving frame1.
Scalar and vector modes decay steeply (∝ a−3, where a is
the direction-averaged scale factor) as the Universe expands,
whereas tensor modes can be characterized as the linear com-
bination of modes that initially grow or decay, labelled ‘regu-
lar’ (Treg) or ‘irregular’ (Tirr) following Ref. [19]. This initial

1 We do assume, however, that all sources are perfect fluids: this will be
accurate despite anisotropic stresses in the radiation component since the
calculations start long after matter-radiation equality.
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behavior leads in both cases to an oscillatory solution, with
a phase difference between the two modes. For a given shear
amplitude today, initially-decaying modes are larger at recom-
bination than initially-growing modes, and therefore imprint
greater polarization anisotropy [20–22]; furthermore, in all
but the scalar modes, E-mode polarization is efficiently con-
verted into similar levels of B-mode polarization [22]. As a
consequence, CMB polarization data are the ideal probe to
constrain all but the regular tensor modes [23], and are ex-
pected to give rise to even stronger limits than temperature
anisotropy or nucleosynthesis constraints [2].

Figure 1 summarizes the origin of CMB fluctuations. In
the limit that the deviation from isotropy is small, the geo-
metric and stochastic fluctuations can be added linearly. To
compute the signal imprinted by the background anisotropy
(shaded region of Fig. 1), we have developed the Boltzmann-
hierarchy code ABSolve [23]. ABSolve can predict tempera-
ture and polarization maps and power spectra for all the shear
modes in Bianchi I, V, VII0 and VIIh and is designed to ac-
curately characterize the deterministic Bianchi pattern across
the whole parameter space considered [23]. To naturally al-
low types I, V and VII0 within our parameter space we allow
the rotation scale of the shear principal axes relative to the
present-day horizon scale (denoted x by convention) to be-
come sufficiently large. Strictly, type V is obtained as x→ ∞;
to accommodate this possibility in our prior space we found
that xmax = 105 is sufficient for convergence. Similarly, the
flat Bianchi VII0 limit is obtained by allowing ΩK → 0; we
consider values down to ΩK,min = 10−5. Bianchi type I is ob-
tained as the x and ΩK limits are approached simultaneously.

Data: To confront the model for anisotropic expansion
described above with data, we redeveloped the ANICOSMO
package [11]; our remodeled code, ANICOSMO2, calculates
the CMB contributions from anisotropic expansion using
ABSolve (described above) and from inhomogeneities using
CAMB [25]. The new statistical approach combines a cus-
tom low-` likelihood based on the Planck T+P low-` likeli-
hood with the standard Planck temperature-only high-` likeli-
hood [24]. The high dimensionality of the resulting parameter
space, alongside high computational costs for a full likelihood
evaluation, made it necessary to redesign ANICOSMO around
the slice-sampling nested sampler PolyChord [14, 15]. We
will now describe each of these developments briefly in turn;
further detail is given in the Supplemental Materials.

The low-` likelihood, providing constraints on large an-
gular scales from temperature and polarization, is applied
to multipoles in the range 2 < ` < 29.2 It is based on
foreground-cleaned maps, downgraded to HEALPix [26] reso-
lution Nside = 16 and masked using the LM93 mask [24]. The
temperature map is generated by the Commander component-
separation algorithm operating on data from the Planck 30–

2 2015 CMB spectra and likelihood code section 2.2.1: https:

//wiki.cosmos.esa.int/planckpla2015/index.php/CMB_

spectrum_%26_Likelihood_Code#Low-.E2.84.93_likelihoods
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FIG. 1. The CMB sky in the near-isotropic limit is formed from
the addition of a standard, stochastic background for the inhomo-
geneities to a pattern arising from small anisotropic expansion. In
this work, for the first time, we constrain all modes of the anisotropic
expansion (scalar, vector, regular tensor, irregular tensor). Here we
have depicted anisotropic expansion that is large compared to our
limits (though still small compared to the isotropic mean) for illus-
trative purposes; specifically, (σS /H)0 = 4.2 × 10−10, (σV/H)0 =

3.2 × 10−10, (σT,reg/H)0 = 1.1 × 10−6, (σT,irr/H)0 = 1.8 × 10−8, with
Bianchi scale parameter x = 0.62. Each map shows temperature
(left), E-mode polarization (upper right) and B-mode polarization
(lower right). The overall temperature color scale for the bottom, fi-
nal map is −0.25 mK < T < 0.25 mK, with polarization amplitudes
exaggerated by a factor 30 relative to this. Other panels have been
rescaled as indicated, for clarity.

857 GHz channels [27], nine-year WMAP 23–94 GHz chan-
nels [28] and 408 MHz observations [29]. The polarization
data are derived from Planck’s 70 GHz maps, cleaned using
its 30 GHz and 353 GHz channels as templates for low- and
high-frequency contamination. Note that this represents only
a small fraction of Planck’s large-scale polarization data: the
constraining power of Planck data will increase with future
releases.

We modified the low-` code described in Ref. [24] to accept
maps of the Bianchi temperature and polarization anisotropies
as inputs. These maps, which include the Planck beam, are
computed (as described above) by ABSolve, then masked and
concatenated into a single vector retaining only the unmasked
T , Q and U pixels, where T , Q and U are Stokes parame-
ters describing the CMB intensity and linear polarization. The
vector is divided by the Planck map calibration ycal since the
absolute normalization is uncertain [24] (similarly, the CAMB-

https://wiki.cosmos.esa.int/planckpla2015/index.php/CMB_spectrum_%26_Likelihood_Code#Low-.E2.84.93_likelihoods
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TABLE I. Parameter priors. The first seven parameters are the
ΛCDM baryon (Ωbh2) and cold dark matter (Ωch2) physical densi-
ties, dark energy (ΩΛ) and curvature (ΩK) densities, scalar spectral
index (ns) and amplitude (As) and optical depth to reionization (τ).
The following ten parameters are Bianchi degrees of freedom: the
rotation scale of the shear principal axes (x); the normalized shear
scalar today (σ/H)0 for scalar, vector, regular tensor and irregular
tensor modes; the vector-to-tensor angular offset (γVT ); three Euler
angles defining the principal axis orientation ({α, β, γ}) and the pat-
tern’s handedness (p). The remaining parameters (ycal, Planck’s ab-
solute map calibration, and Θhigh, a list of 14 parameters describing
foreground and instrumental contaminants) are nuisance parameters
used by the low- and high-` likelihood functions, respectively.

Parameter Prior Range Prior Type Speed
Ωbh2 [0.005, 0.05] uniform 1
Ωch2 [0.05, 0.3] uniform 1
ΩΛ [0, 0.99] uniform 1
ΩK [10−5, 0.5] uniform 1
ns [0.9, 1.05] uniform 1
As [1, 5] × 10−9 log-uniform 1
τ [0.01, 0.2] uniform 1

x (vector-only search) [0.05, 2] uniform 2
x (all-mode search) [0.05, 105] log-uniform 2

(σS /H)0 [−10−8, 10−8] uniform 2
(σV/H)0 [10−12, 10−8] log-uniform 2

(σT,reg/H)0 [10−12,10−4] log-uniform 2
(σT,irr/H)0 [10−12,10−4] log-uniform 2

γVT [0◦, 180◦] uniform 2
α [0◦, 360◦] uniform 2
β [0◦, 180◦] sine-uniform 2
γ [0◦, 360◦] uniform 2
p left/right discrete N/A

ycal see Ref. [24] 3
Θhigh see Ref. [24] 4

computed power spectra required by the low-` likelihood are
divided by y2

cal). Our final Bianchi vector is subtracted from
the vector of Planck data to correct for the anisotropic expan-
sion corresponding to the input parameters.

A direct calculation of the likelihood from the resulting
corrected data vector is computationally prohibitive, even at
modest resolution, due to the inversion of a large pixel covari-
ance matrix that changes in response to the cosmological and
calibration parameters. The original Planck likelihood code
optimizes the inversion for the case that the data vector does
not change between evaluations. However, the anisotropic-
expansion correction to the maps is parameter-dependent. We
have therefore generalized the code to retain similar efficiency
when all inputs are changing. For more information, see Sup-
plemental Materials.

We employ the Planck TT high-` power-spectrum likeli-

hood [24] for multipoles 29 < ` ≤ 2508.3 This uses tempera-
ture data from various combinations of the 100–217 GHz de-
tectors, masked to remove the Galactic plane, regions of high
CO emission and point sources. The remaining astrophysi-
cal foregrounds are modeled within the Planck code using 14
parameters. To take into account the imprint of anisotropic
expansion on small scales, we sum the ABSolve and CAMB
power spectra within ANICOSMO2 before passing to the high-`
likelihood. For anisotropic models the power spectrum does
not provide lossless data compression, but in the expected
limit that the geometric signal is subdominant to the stochas-
tic component, one may show that the approach gives a good
approximation4 to the correct likelihood (see Ref. [23]).

In total, there are 32 parameters describing the cosmol-
ogy, calibration and foregrounds (Table I). To sample this
high-dimensional space efficiently, we have redesigned our
approach around the PolyChord package [14, 15], which sub-
stitutes slice sampling for the rejection sampling [31–33] em-
ployed in our previous work which sampled a maximum of 13
parameters [11, 23]. Rejection sampling scales exponentially
with dimensionality, whereas PolyChord scales at worst as
O(D3) with the further advantage of an algorithm which paral-
lelizes nearly linearly. PolyChord is also capable of exploit-
ing likelihood optimizations arising from fixing some param-
eters. Recalculating the CAMB power spectra, ABSolve maps
and spectra, low-` likelihood, and high-` likelihood take ap-
proximately 40, 3, 0.5 and 0.006 seconds respectively, on a
single core. PolyChord efficiently explores the parameter
space by oversampling the faster foreground parameters with
respect to the slower cosmological parameters.5 We marginal-
ize over the handedness, p, of the Bianchi models by sampling
the left- and right-handed posteriors individually and combin-
ing the results as described in the Supplemental Materials.
The priors applied have been motivated in Ref. [23].

Results: As a test of the information carried by the po-
larization, we first apply our search to vector modes only, as
vorticity has been the focus of all previous work constrain-
ing anisotropic expansion with Planck [12, 13]. We obtain a
limit of (σV/H)0 < 4.9 × 10−11 (95% CI). This can be recast
in terms of the vorticity parameter (ω/H)0, which expresses
the rotation rate of the universe, giving (ω/H)0 < 5.2 × 10−11

(95% CI). Although constraints are slightly prior-dependent
(see Ref. [23] for a discussion), previous analyses [12, 13] re-
port limits on the vorticity of (ω/H)0 < 7.6× 10−10 (95% CI).
Our new limit is therefore tightened relative to earlier con-
straints by an order of magnitude.

For the first full test of isotropy, our second analysis simul-
taneously constrains all degrees of freedom in the cosmologi-

3 2015 CMB spectra and likelihood code section 2.2.2: http:

//wiki.cosmos.esa.int/planckpla2015/index.php/CMB_

spectrum_%26_Likelihood_Code#High-.E2.84.93_likelihoods
4 Even for anisotropic theories one may estimate the full-sky power accu-

rately from cut-sky data [30].
5 We set up PolyChord such that nlive = 500, nrepeats = 8, and it spends 70,

20, 5, and 5% of its time sampling parameters of each speed (see Table I).
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TABLE II. 95% credible intervals for the anisotropy modes and log-evidence ratios for the overall anisotropic models compared to homoge-
neous and isotropic flat ΛCDM. Negative values of the log-evidence ratio favor isotropy.

Mode Planck WMAP
Scalar −6.7 × 10−11 < (σS /H)0 < 9.6 × 10−11 −3.5 × 10−10 < (σS /H)0 < 4.0 × 10−10

Vector (σV/H)0 < 4.7 × 10−11 (σV/H)0 < 1.7 × 10−10

Tensor, reg (σT,reg/H)0 < 1.0 × 10−6 (σT,reg/H)0 < 1.3 × 10−6

Tensor, irreg (σT,irr/H)0 < 3.4 × 10−10 (σT,irr/H)0 < 6.7 × 10−10

Vector (vorticity) only −5.6 ± 0.3 −3.3 ± 0.1
All anisotropic modes −11.7 ± 0.3 −8.0 ± 0.2

cal shear tensor. The resulting limits are presented in Table II.
We also present the constraints calculated using our older like-
lihood [11, 23], based on temperature data from the Wilkinson
Microwave Anisotropy Probe (WMAP) internal linear combi-
nation maps [34], as a baseline for comparison. Note that the
WMAP setting in Ref. [23] already contained some method-
ological improvements (specifically the treatment of high-`
Bianchi power) that enhanced the constraints over standard
analyses. However, because we also widen the prior range
on x (Table I) to include the Type V limit, the all-mode con-
straints are not directly comparable to results from these older
single-mode searches.

We recover upper limits for all modes, showing that the
Universe is consistent with isotropic expansion. The tight-
est constraints are placed on the fastest-decaying modes: the
scalar, vector and irregular tensor modes. The limits on the
regular tensor modes are much less stringent as a result of the
dynamics. For most modes, the shear at last scattering is am-
plified by a factor a−3 relative to the present-day value; for the
regular tensors, this enhancement factor can be vastly smaller.
The temperature and, especially, polarization anisotropies cor-
responding to a fixed present-day shear are therefore also
smaller. The effect on polarization is pronounced, making
such data particularly effective at discriminating between the
two tensor modes, for which the temperature pattern is gener-
ally similar.

The consistency of the data with statistical isotropy is
also borne out by comparing the model-averaged likelihoods
(known as evidences) for the Bianchi cosmology and flat
ΛCDM. The ratio of the model-averaged likelihoods tells us
whether the Universe is most likely anisotropic or isotropic,
given our CMB observations. The bottom two rows of Table II
contain the ratios calculated for our vector-only and all-modes
analyses. Upgrading from WMAP temperature data to Planck
data with polarization, the preference against anisotropic ex-
pansion becomes significantly stronger, with odds of 270:1
against anisotropy in the vector-only case. In the all-modes
analysis, the larger parameter space leads to overwhelming
odds against anisotropic expansion: 121,000:1.

Conclusions: In this work, we put the assumption that the
Universe expands isotropically to its most stringent test to-
date. For the first time, we searched for signatures of the most
general departure from isotropy that preserves homogeneity

in an open or flat universe, without restricting to specific de-
grees of freedom. We have remodeled existing frameworks
to analyze CMB polarization data in addition to temperature,
allowing us to place the tightest constraints possible with the
current CMB data. We find overwhelming evidence against
deviations from isotropy, placing simultaneous upper limits
on all modes for the first time, and improving Planck con-
straints on vorticity by an order of magnitude.
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