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Abstract: 
 
The stochastic kinetics of transcription is typically inferred from the distribution of RNA 
numbers in individual cells. However, cellular RNA reflects additional processes downstream of 
transcription, hampering this analysis. In contrast, nascent (actively transcribed) RNA closely 
reflects the kinetics of transcription. We present a theoretical model for the stochastic kinetics of 
nascent RNA, which we solve to obtain the probability distribution of nascent RNA per gene. 
The model allows us to evaluate the kinetic parameters of transcription from single-cell 
measurements of nascent RNA. The model also predicts surprising discontinuities in the 
distribution of nascent RNA, a feature which we verify experimentally.    
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Transcription, the production of RNA from a gene, is a stochastic process consisting of multiple 
single-molecule events [1,2]. The inference of transcription kinetics is typically addressed as an 
inverse problem, using the ergodic assumption that population statistics contain the signature of 
single-cell kinetics. Specifically, the number of RNA molecules from the gene is measured in 
many individual cells simultaneously using microscopy-based methods [3-5], and the measured 
RNA copy-number distribution is then compared to the prediction from a stochastic model for 
transcription kinetics [6-9]. This approach has been successfully used to demonstrate the bursty, 
non-Poissonian nature of transcription [6-8] and to examine how transcription kinetics are 
modulated by transcription factors [10-12].    
 
However, mapping cellular RNA number to the underlying kinetics of transcription is hampered 
by the fact that this number reflects additional processes downstream of transcription, such as 
RNA degradation and its partitioning during cell division. The stochasticity of both processes 
may mask that of the transcription process [13,14]. Moreover, cellular RNA represents the 
combined contributions from multiple copies of the same gene, whose number changes through 
the cell cycle [14,15] and whose activity may be correlated [15-18].  
 
In contrast to total cellular RNA, nascent RNA—the RNA molecules still actively transcribed at 
the gene—is not subject to these effects, and therefore bears more closely the signature of the 
transcription process. Recent progress in fluorescence microscopy has allowed measuring the 
amount of nascent RNA at individual genes in single cells [8,15,16,19-24]. However, the 
theoretical modeling of nascent RNA kinetics is only at its infancy [8,16,23,25-27]. We still lack 
a theoretical framework for mapping the single-cell measurements back to the stochastic kinetics 
of transcription. The goal of this paper is to develop such a framework. 
 
The model: We model the kinetics of nascent RNA as consisting of four steps (Fig. 1(a)): Gene 
activation, transcription initiation, RNA synthesis (elongation), and release [8,16,23]. The gene 
fluctuates between two states, active (state 1), where transcription initiation is allowed, and 
inactive (state 0), where it is forbidden. Transitions between states and the initiation of 
transcription in the active state are modeled as Poisson processes, with rates 01k , 10k  and INIk , 
respectively [6,9,28,29]. Following initiation, RNA synthesis proceeds with a constant 
elongation speed ELV  [25,30], to a final length L . The completed RNA molecule remains on the 
gene for a (deterministic) duration ST  before being released [22,31]. See Supplemental 
Material [32] for a detailed discussion of model assumptions and of possible extensions to the 
model.   
 
The state of the system is defined by two random variables, the gene state n  ( 0, 1n = ) and the 
amount of nascent RNA m  ( 0m ≥ ). m  is obtained by summing over all nascent RNA 
molecules present at the gene, and is measured in units of a single complete (mature) RNA 
[8,14,16]. Since nascent RNAs may be incomplete [14,22], m  can have non-integer values. Here 
we generalize m  to represent the experimentally measured signal from the nascent RNA. The 
actual value of m  thus depends on the specific experimental observable (Fig. 1(b)). For 
example, in the case of single-molecule fluorescence in situ hybridization (smFISH, [3-5]), 
commonly used for RNA detection, m corresponds to the fluorescent signal emitted by 
oligonucleotide probes bound to the RNA.  In all cases, the signal m  at time t  is determined by 



3 
 

initiation events happening within a time window RES EL ST L V T= + (the residence time of RNA 
at the gene) prior to t , and the contribution from each nascent RNA molecule depends only on 
its length at time t . We define the contribution function ( )G l  to describe the signal from a single 
RNA of length l  [23]. Since l  is determined by the difference between the RNA initiation time 

it  and the observation time t , we can rewrite G  as a function of this time difference, 
( ) ( ( ))g G lτ τ= , with it tτ = −  ( RES 0T τ− ≤ ≤ ) and EL( ) min{ , }l L Vτ τ= −  [16]. The observed 

signal is then given by 
RES

( ) ( )
i

i
t T t t

m t g t t
− ≤ ≤

= −∑ . The form of ( )g τ  reflects the experimental 

observable. A few examples are depicted in Fig. 1(c) and discussed in more detail below. In all 
cases, ( )g τ  is non-increasing, with the delay ST  in RNA release represented as a time period 
with 1g = .  
 
General approach to solving the model. Because m exhibits a finite deterministic memory (over 
duration REST ), we cannot easily write the master equation for the probability distribution 

( , )P n m . To overcome this problem and solve for the state of the system at time t , we first 
define the pseudo-observables ( , ) ( )t n tτ τ≡ +n , which indicates the gene state n  at t τ+ , and 

RES

( , ) ( )
i

i
t T t t

t g t t
τ

τ
− ≤ ≤ +

≡ −∑m , which describes the accumulation of m  over the history from 

RESt T−  to t τ+ . Here, τ  varies from REST−  to 0. Notably, 0=m  for RESTτ = −  and m=m  
for 0τ = . Next, we write the master equation for the probability distribution ( , )P n m [16]: 
 

 INI INI
( ) ( ) ( ) ( ( )).d g
d

τ
τ

= − + −P K K P K Pm m m   (1) 

 

Here, 01 10

01 10

k k
k k

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

K , INI
INI

0 0
0 k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

K  , and 
(0, )

( )
(1, )

P
P
⎡ ⎤
⎢ ⎥
⎣ ⎦

=P
m

m
m

. Note that we allow m  

to be negative, but Eq. (1) guarantees that ( 0) 0< =P m  as long as the initial conditions satisfy 
that condition. To obtain the distribution of the true observables ( , )n m , we solve Eq. (1) for the 
pseudo-observables ( , )n m and substitute 0τ =  (Alternatively, Eq. (1) can be used to derive 
an equation for ( , )P n m ,  see Supplemental Material [32]).  
 
We focus on the steady-state behavior of ( , )P n m . Using the definition of m  and the (easily 
calculable) steady-state distribution for the gene state n , we obtain the initial condition

RES

10

0101 10

( )( )T

k
kk kτ

δ
=−

⎡ ⎤
= ⎢ ⎥+ ⎣ ⎦

P mm . To solve Eq. (1), we transform ( , )P n m  to its characteristic 

function 
0

( , ) ( , )ie P dωω
∞

Ψ ≡ ∫ mn n m m [46] to obtain 

 

 ( )( ) ( ( 1) ) ( ),i gd e
d

ω τω ω
τ

= + − INI
Ψ K K Ψ   (2) 
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with 
(0, )

( )
(1, )

ω
ω

ω
Ψ

=
Ψ
⎡ ⎤
⎢ ⎥
⎣ ⎦

Ψ  and the initial condition 
RES

10

0101 10

1( )T

k
kk kτ ω=−
⎡ ⎤

= ⎢ ⎥+ ⎣ ⎦
Ψ . Eq. (2) is 

analogous to a quantum mechanical spin system with a time-dependent interaction term. Its 
solution is therefore given by the Dyson series [54]: 
  

 ( )1 RES

RES
RES RES

1

0 ( )
0 1

1
( ) ( ) ,N

i

i N

Ti g
N i TT T

N
d d e e

τ ω τ
τ τ

τ τ τ
ω τ τ τ−

∞
−

= =−− −
= ≥ ≥

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∏∫ ∫ INIK KΨ I V Ψ   (3) 

 
where ( ) ( )( ) e eτ ττ − − −= INI INIK K K K

INIV K . Applying the inverse transformation, we obtain the steady-
state distribution, 
 

 
( )1 RES

RES
RES RES

0
0

0

1
1 1 1

1( ) ( ) ( )
2

( ) ( ) T ( ) .N

im
N

N

NN
T

N i i TT T
N i i

m e d m

m d d m g e

ω
τ

τ

τ

ω ω
π

δ τ τ δ τ τ−

∞+∞ −
=−∞

=

∞
−

=−− −
= = =

= =

⎧ ⎫⎡ ⎤⎛ ⎞= + −⎨ ⎬⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦⎩ ⎭

∑∫

∑ ∑ ∏∫ ∫ INIK K

P Ψ P

V Ψ
  (4) 

 

where T  is the time-ordering operator. 
(0, )

( )
(1, )N

P m N
m

P m N
⎡ ⎤
⎢ ⎥
⎣

=
⎦

P  is the vectorized probability of 

observing m, given that the number of initiation events in the time interval RES 0T τ− ≤ ≤  was 
exactly N . In the general case, ( )N mP  depends on the contribution function ( )g τ , and therefore 
solving Eq. (4) requires knowing the specific form of ( )g τ . Below we describe the solution for a 
number of experimentally-relevant examples. A closed-form solution may not be always 
possible, but ( , )P n m  can be calculated numerically using the finite state projection method 
[16,23,33,47](Supplemental Material [32]). For the purpose of comparing with experimental 
data, the calculated distribution is typically marginalized over n , i.e. ( ) ( , )

n
P m P n m=∑ . The 

moments of ( )P m  can be directly calculated from Eq. (2) (Supplemental Material [32]): 
 

 
1

1

RES
RES RES

0
1, , 1

0

0

1
1 0 1 1

( ) (0)

T ( ) ( ) (0),I
i i

i I
i I

N
N N

N

IN
i k k

I i i TT T
I k k k N i i

dm i
d

k
d d g

k

τ

τ

τ

ω

τ τ τ τ−
−

= −

=

−
=−− −

= = < < = = −

= ⋅ −

⎡ ⎤⎛ ⎞
= ⋅ ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑ ∏∫ ∫

u Ψ

u W Ψ
  (5) 

 
with ( )1,1=u  and ( ) e eτ ττ −= K K

INIW K . Below we use these moments to explore the shape of 
( )P m  as a function of model parameters.  
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Solutions for specific contribution functions. Case 1: g = 1. This corresponds to measuring the 
number of RNA polymerases (RNAPs) currently transcribing the gene (Fig. 1(c), panel I), or, 
equivalently, the number of nascent RNA molecules present, irrespective of their lengths [8]. 
Here and below we assume for simplicity that S 0T =  (i.e. RNA is released from the gene 
immediately upon completion [16,19]), and (without loss of generality) set RES 1T = . Since g  in 
this case does not take fractional values, we replace the characteristic functions with generating 

functions, 
0

( , ) ( , )F z z Pττ
∞

=

≡ ∑ m
n

m
n m  and 0 1( , ) ( , ) ( , )F z F z F zτ τ τ≡ + , and transform Eq. (1) 

to obtain 
 
 01 10 INI INI 01( (1 ) ) (1 ) 0,F k k z k F z k k F+ + + − + − =   (6) 
 

with the initial conditions ( , 1) 1F z − = , INI 01

01 10

( , 1) ( 1) k kF z z
k k

− = −
+

. Solving Eq. (6) and 

performing the inverse transformation allows us to calculate the marginal probability distribution 
of m  (see Supplemental Material [32]), 
 

 

01 10 INI
2

INI 01 10 INI INI 01
1,

001 10

1
01 10

0, 1,
0 001 10

( )
! 2 2

1
,

k k k
m m

i
i

m m

i i
i i

mk k k k k keP m M
im k k

m mk kM m M
i ik k

+ +−

=

−

= =

⎧⎡ ⎤ ⎛ ⎞+ +⎪⎛ ⎞= −⎨⎢ ⎥ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎪ ⎝ ⎠⎣ ⎦⎩
− ⎫⎛ ⎞ ⎛ ⎞−+ + ⎬⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎭

∑

∑ ∑
  (7) 

 

with ( )min( , )
INI 1 INI 2

,
2 max(0, )

1 !
(2 )! 2 2

i l w l i wl i

s i
l i w i l

l l i k kM
w i w l s

κ κ− − +

≥ = −

−⎛ ⎞⎛ ⎞ + +⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ , 1,2 10 01 10 012k k i k kκ = − ± . 

Eq. (7) provides the exact solution for the distribution of the number of transcribing RNAPs at 
the gene.  
 
Figure 2(a) depicts ( )P m , calculated from Eq. (7), for a few parameter values. Stochastic 
simulations of the model, also shown, agree with the analytical calculation (Supplemental 
Material [32]).  For insight into the shape of ( )P m , we first note that gene-state transitions are 
typically believed to be slow compared to both the rate of initiation and the time to complete one 
RNA [8,16,55]. Specifically, in the limit  01 10 INI( & )k k k  and 01 10( or ) 1k k , Eq. (7) can be 
written as the weighed sum of two Poisson distributions, with rates 0 and INIk  (Supplemental 
Material [32]). In this limit, ( )P m  is also identical to the solution for the commonly used two-
state model for cellular RNA kinetics [6,8,9,29], if we replace the residence time REST  with the 
RNA degradation rate Dk . Outside that limiting case, however (as e.g. in [16]), the two 
distributions can be quite different (Fig. S1 in the Supplemental Material [32]).  
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To map how the shape of ( )P m  varies with transcription parameters, we defined the bimodality 
coefficient, 21 ( )β κ γ≡ − , where γ  is the skewness and κ  the kurtosis of ( )P m  [51]. 
Calculating β  over a broad range of kinetic rates, and using a threshold of th 5 9β =  
(corresponding to a uniform distribution, see Supplemental Material [32]), we found that ( )P m  
is bimodal for 01 10~ 1k k  and INI 1k , and unimodal outside this region (Fig. 2(b)). The 
unimodal region can be further divided based on the position of the distribution peak, at 0m =  or 

0m >  (Fig. 2(b)). 
 
Case 2: g = −τ. This corresponds to measuring the total length of nascent RNA, summed over 
multiple molecules present at the gene (Fig. 1(c), panel II). Experimentally, this is achieved by 
using multiple smFISH probes covering the length of the target gene [4]. In contrast to Case 1 
above, m  is now continuous, and Eq. (2) can be transformed to a single equation for (1, )ωΨ  
(Supplemental Material [32]): 
 
 ( ) ( )01 10 INI INI 01 INI 01(1, ) 1 (1, ) (1, ) 0,i ik k k e k k i e k kωτ ωτω ω ω ω− −⎡ ⎤ ⎡ ⎤Ψ + + + − Ψ − − − Ψ =⎣ ⎦⎣ ⎦   (8) 

 

with the initial conditions 01
1

01 10

(1, ) k
k kτ ω=−Ψ =

+
, 01 INI

1
01 10

(1, ) ( 1)ik k e
k k

ω
τ ω=−Ψ = −

+
. By solving Eq. 

(8), we obtain the exact expression for ( ) (0, ) (1, )ω ω ωΨ ≡ Ψ + Ψ  as a combination of confluent 
hypergeometric functions. Since transforming ( )ωΨ  back to an analytical form of ( )P m  is 
challenging, we proceed to calculate ( )P m  using finite state projection [16,23,33]. The 
calculated ( )P m  exhibits the same three characteristic shapes as in Case 1, but the boundaries in 
parameter space between regions exhibiting different shapes are shifted by up to 2-fold (Fig. S2 
in the Supplemental Material [32]).  Thus, the difference in contribution functions can lead to 
different shapes of ( )P m  for the same transcription parameters (another example of this effect is 
described below).  
 
Inferring transcription kinetics from single-cell measurements of nascent RNA. To 
demonstrate how the model can be used to interpret experimental data, we first examined the 
transcription of the hunchback (hb) gene in embryos of the fruit fly, Drosophila melanogaster 
([16] and Supplemental Material [32]). Early in development, hb is regulated by the 
transcription factor Bicoid (Bcd), whose concentration forms a gradient along the embryo [56] 
(Fig. 3(a)). We measured the amount of nascent RNA at individual copies of the hb gene [16], 
and examined the distribution of nascent RNA over all cell nuclei within a given region of the 
embryo (corresponding to a given Bcd concentration) (Fig. 3(a)). Next, we solved Eq. (1) using 

( )g τ  that corresponds to the set of smFISH probes used in the experiment [16], and used 
maximum likelihood estimation to fit the model to the experimental data. The model was able to 
capture the change in ( )P m  shape along the embryo (Fig. 3(a)). We found that the regulatory 
effect of Bcd is to increase 01k  (>50 fold along a single embryo) while 10k  and INIk  remain 
almost unchanged (Fig. 3(a)). Thus, the model allowed us to identify what aspect of hb kinetics 
is modulated during gene regulation [16].     
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In the second example, we labeled the two halves of the same gene using two different smFISH 
probe sets carrying two different fluorescent dyes (Fig. 3(b) and Supplemental Material [32]). 
In the experiment, the two probe sets yielded very different signal distributions ( )P m  (both 
normalized to the signal from a single full-length RNA). In particular, the signal from the first 
half of the gene was spread ~2 fold wider on the m  axis than that from the second half (Fig. 
3(b)). Since both probe sets label the same gene, the two data sets should be describable using 
the same kinetic parameters, the only difference being the form of ( )g τ , which we calculated 
directly from the probe positions on the gene (Fig. 3(b)). In agreement with this hypothesis, we 
were able to fit the two experimental distributions (as well as the joint distribution) using a single 
set of transcription parameters (Fig. 3(b) and Supplemental Material [32]).    
 
Discontinuities in P(m). As noted above, a distinctive feature of nascent RNA, in contrast to 
mature cellular RNA, is that it can be approximated as continuous [4,5,16]. When examining the 
behavior of our model in the case g τ= −  (i.e. measuring the total amount of nascent RNA at the 
gene), we found that, for multiple parameter choices, ( )P m  appears discontinuous at integer 
values of m  (insets of Fig. S2(a) in the Supplemental Material [32]). This discontinuity was 
consistent with the appearance of terms of order 1 ω  in the characteristic function ( )ωΨ  [57]. 
The source of the discontinuity can be understood by noting that, in Eq. (4), ( )P m  is written as 
the sum of ( )NP m , the probabilities of observing m  given that the number of initiation events in 
the time interval RES 0T τ− ≤ ≤  is N  (equivalently, the number of RNAPs present at the gene is 
N ). Since, for a given N , m  cannot exceed N , the result may be a discontinuity of ( )P m  or its 
derivatives at integer values. Specifically, since 0 ( ) ( )P m mδ∝ , ( )P m  has an infinite 
discontinuity at 0m = . 1( )P m  is nonzero only for 1m ≤ , hence ( )P m  has a jump discontinuity at 

1m = . For higher values of N , it can be shown that the ( 1)N − th derivative of ( )P m  has a jump 
discontinuity at m N=  (Supplemental Material [32]). For each point of discontinuity, the 
magnitude of the jump is 
 

 ( )
1 1 1

INI 11 1

( ) ( ) ( 1) .
!

N N N
N

N N N
m N m N

d P m d P mP e
dm dm N τ

− +

− − −
−

=−− −
= =

−Δ = − = ⋅ INIK Ku K Ψ   (9) 

 
We explore this feature in Fig. 4. For the parameters used ( 01 10 0.1k k= = , INI 50k = ), zooming in 
to the low range of m reveals a sharp drop of ( )P m  at 1m =  (Fig. 4(a)). At higher integer m ’s, 
the drop becomes smaller and is shifted to the left (Fig. 4(a)). The drop reflects the discontinuity 
of ( )P m  (or its derivatives) at integer m ’s. Each drop is preceded by an increase of ( )P m , 
resulting in a peak at m N −→  (Fig. 4(b)). This peak, in turn, is due to the fact that, when 

INIk N  and gene transitions are slow ( 01 10, 1k k ), the two most probable ways of observing 
exactly N  initiation events are for the gene to be active only at the beginning ( RESTτ +→ − ) or the 
end ( 0τ −→ ) of the time window, resulting in maxima of ( )NP m  at m N −→  and 0m +→ , 
respectively (Fig. 4(b)).  
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To ask whether these features of ( )P m  can be detected experimentally, we first defined the 
discontinuity factor 1 ( 1 )r P P m +≡ Δ =  to characterize the magnitude of the jump in the 
distribution of nascent RNA. Calculating r  over a wide range of kinetic rates indicated that it 
would be high ( 0.1> ) for 1

01 10k  (Fig. 4(c)). This range covers the estimated parameters in 
multiple biological systems [16,23,58], including our measurements in Drosophila (Fig. 3 
above). To then try and detect this feature in our experimental data, we focused on the small m  (

6.5< ) range, where the peaks in ( )P m  are expected to be the highest (Fig. 4(a)). To improve 
data sampling, we defined the variable 0 [ ]m m m= −  (where [ ]⋅  denotes the nearest integer) such 
that all m  values are mapped into the range [ 0.5, 0.5)− . Using this procedure, we detected a 
peak to the left of 0 0m = , as predicted by the model (Fig. 4(d)). Allowing for the finite binding 
probability of smFISH probes [16,53], we were able to successfully reproduce the shape of the 
folded probability distribution (Fig. 4(d), see Supplemental Material [32]). Thus, the 
experimental data supports the theoretical prediction of discontinuity in the distribution of 
nascent RNA. The periodic discontinuities can be used to identify the signal intensity 
corresponding to a single RNA, thus improving the precision of RNA counting using smFISH 
[3,5,14,16]. 
 
Conclusion. We presented a theoretical framework for connecting the stochastic kinetics of 
transcription with the resulting probability distribution of nascent RNA at the gene. By changing 
the form of the contribution function ( )g τ , the model can be used to describe different 
experimental observables. The model allowed us to interpret experimental data, extract the 
kinetic parameters of gene activity, and identify how the kinetics vary under the regulatory 
influence of a transcription factor. The model also predicted a hitherto unobserved feature of 
discontinuities and periodic peaks in nascent RNA distribution, which we were able to validate 
experimentally. To further improve the estimation of transcription parameters, the model for 
nascent RNA can be combined with one for the total cellular RNA [15] and compared to 
experimental measurements of both species simultaneously [3,6,8,15] (Supplemental Material 
[32]). Beyond the steady-state distribution discussed here, solving for the time-dependent 
behavior of the model (Supplemental Material [32]) can allow a direct comparison with live-
cell measurements of nascent RNA [19,21,22]. 
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FIG. 1. A stochastic model of nascent RNA kinetics. 

(a) Model schematic. (b) Different experimental observables that can be described by the model: 
The number of RNA polymerases (RNAPs) on the gene (green), the amount of nascent RNA 
(red), and the signal from single-molecule fluorescence in situ hybridization (smFISH) probes 
(blue).  (c) The contribution function corresponding to the three observables in panel b. In all 
cases, S 0T = .  
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FIG. 2. The probability distribution for the number of RNAPs at the gene. 

(a) The exact solution for ( )P m  (binned to integer values, red) for a few parameter values. Also 
shown are the results of stochastic simulations (gray). (b) The bimodality coefficient β  as a 
function of 01k , 10k  and INIk  was calculated and thresholded ( th 5 9β = , bottom, red surface) to 
classify ( )P m  as either bimodal or unimodal. The unimodal distributions were further classified 
based on the peak position. Parameter values corresponding to panel a are marked as gray circles. 
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FIG. 3. Estimating transcription kinetics from experimental data.  

(a) Regulation of the hb gene by Bcd. Top left, Bcd forms a concentration gradient along the 
anterior-posterior axis of the Drosophila embryo. Grey circles indicate individual cell nuclei. 
Three representative regions of the embryo are highlighted in pink, corresponding to high (I), 
medium (II) and low (III) Bcd concentrations. Right, the measured distribution of nascent hb 
RNA at each region (smFISH data from a single embryo, >200 data points per histogram, bin 
width = 3), and the corresponding theoretical fit (red). Bottom left, the estimated transcription 
parameters (dots), superimposed on the modality phase plane of ( )P m  calculated as in Fig. 2(b). 
(b) The effect of smFISH probe positions. Two different sets of probes were designed against the 
bcd3-lacZ reporter gene, targeting the first half (blue) and second half (magenta) of the gene. 
The two sets yielded different distributions of nascent RNA (top and bottom, >250 data points 
from a single embryo, at 0.2-0.3 embryo length, bin width = 4). Using the contribution functions 
calculated from the probe positions on the gene (insets) yielded a good fit between the model and 
experimental data.  
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FIG. 4. Discontinuities in nascent RNA distribution at integer m values. 

(a) The calculated distribution of nascent RNA at small values of m , for 01 10 0.1k k= = , 

INI 50k = . A larger range of m  is shown in the inset. The range of m  was divided into windows 
covering −0.5 to 0.5 around each integer (colored shading). (b) The origin of discontinuity at 

1m = . The total probability of observing m  is a marginalization over different numbers of 
RNAPs on the gene (plotted for 1, 2, 3N = ). (c) The discontinuity factor r  as a function of 01k , 

10k  and INIk  was calculated and thresholded ( th 0.1r = , left, red surface). Black dot indicates the 
experimental data analyzed in panel d. (d) The experimental signature of ( )P m  discontinuity. 
Nascent RNA from bcd3-lacZ was measured using smFISH (at 0.1-0.3 embryo length, 23 
embryos). The distribution of 0m , the deviation of m  from the nearest integer, was calculated 
(gray, 3.5 6.5m≤ < , ~500 data points, bin width = 0.1) and compared to model predictions with 
(red) and without (dashed blue) incorporating the effect of finite probe binding probability p0.  
 


