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Abstract- We demonstrate through Brownian dynamics simulations a phase transition in 

plastic crystalline assemblies of Janus spheres through controlled pressure anisotropy. 

When the pressure in plane with hexagonally ordered layers is increased relative to that 

normal to the layers, a rapid first-order rotator-to-lamellar transition of Janus sphere 

orientation occurs at constant temperature. We show that the underlying mechanism 

closely follows the Maier-Saupe theory, originally developed for isotropic-to-nematic 

transition in positionally disordered materials but here applied to positionally ordered 

ones. Since the transition involves almost no translational diffusion or volume change, 

and occurs rapidly by particle rotation, the results should help guide the design of rapidly 

switchable colloidal crystals. 

 

Self-assembly of colloidal particles is a promising way to develop new materials with 

targeted properties. The large freedom in control over the inter-particle potential has 

made it possible to design colloidal particles which significantly extend the possibilities 

offered by atomic systems [1, 2]. Such particles form colloidal crystals, structures 

analogous to molecular crystals with long-range order and characteristic length on the 

order of particle size [3, 4]. The possibility of controlling and reconfiguring such crystals 

is attractive for many technological applications. An example is the ability of such 

structures to manipulate light with wavelengths in the visible range set by particle size 

and packing periodicity [5], with applications in wave guides, band pass filters, and 

negative refractive index materials [6, 7]. Designing processes that enable the formation 

of such novel materials requires thorough understanding of the equilibrium 
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thermodynamics of crystal formation and the kinetics of their formation and 

reconfiguration. 

One of the most interesting features of colloidal particles is the possibility of tuning 

and patterning their surface chemistry. Due to recent advances in particle synthesis 

methods [8, 9], it is now possible to fabricate particles decorated with patches of well-

defined number, size, and geometrical arrangement [10, 11]. The most elementary and 

geometrically simple surface-patterned particle is a Janus sphere, characterized by a 

surface divided into two regions of differing chemical composition [12]. While using 

homogeneous spheres as building blocks for colloidal crystals typically yields close-

packed structures with slight room for variability [13], Janus spheres can spontaneously 

self-assemble into a variety of structures, holding promise for development of materials 

with novel functional, mechanical, and optical properties. Some of the structures realized 

so far include clusters, helices, and worm-like aggregates [14-16]. 

Most of the available equilibrium phase behavior studies on single-patch Janus 

particles have focused on the square-well Kern-Frenkel type potential typically 

parameterized to represent long-range interactions, i.e. those enabling a fluid-fluid phase 

separation [17-20]. These studies revealed the spontaneous formation of micelles, 

lamellae, tubes, wrinkled sheets, and other close-packed structures with varying degrees 

of orientational order. Smooth and shorter-ranged potentials have been considered in a 

few recent works [21, 22] providing more realistic interactions comparable with 

traditional colloidal forces. The important parameters governing the phase behavior of 

Janus spheres are considered to be: the volume fraction, surface coverage of the attractive 

cap, temperature non-dimensionalized by the interaction strength, and the interaction 

range normalized by particle size, with the pressure presumably set by the volume 

fraction. However, the broken symmetry in surface coverage causes the pressure to 

generally depend on the orientational distribution of neighboring particles, which can 

vary along different directions. This so-far-overlooked possibility adds another dimension 

to characterization of phase behavior in systems comprised of anisotropic particles. A 

particularly attractive prospect is to make colloidal assemblies that can be switched from 

one structure to another through controlled pressure anisotropy. 
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In this Letter, we show using Janus building blocks that tuning the ratio of lateral to 

normal pressures can trigger a transition between two solid phases: from an isotropic 

crystal with orientational disorder (i.e. a rotator phase) to an orientationally ordered 

crystal with lamellae in the desired direction. In contrast to the phases shown in previous 

studies, we develop phase diagrams based on the new dimension of pressure anisotropy 

and discuss the physical mechanism governing the observed solid-solid transition. The 

novelty and significance of the proposed mechanism lies in the fact that it does not 

require tuning the particle surface or interaction strength, which would experimentally 

require involved fabrication procedures or fine control over size, shape, and 

concentration of introduced depletants/linkers. Furthermore, we demonstrate that this 

tunable orientational ordering can be explained semi-quantitatively in terms of the Maier-

Saupe theory for an isotropic-nematic phase transition, where a phenomenological energy 

constant can be parameterized in terms of the chemical patchiness, interaction strength, 

and the applied pressures and temperature. The theoretical analysis helps in generalizing 

the observed transition, which can provide crucial insight in designing switchable and 

reconfigurable materials for targeted applications. 

We consider Janus spheres comprised of an attractive cap whose size is characterized 

by the central half-angle α known as the Janus balance [22], and a repulsive cap covering 

the rest of the surface (2π - 2α). To model the anisotropic interaction between these 

particles, we use a functional form similar to the one proposed by Miller and Cacciuto 

[21], expressing the potential between particles i and j as 
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where rij is the distance between the centers of the two particles, θi is the angle between 

the director of particle i and the center-to-center vector connecting particles i and j, uSLJ is 

a short-range repulsive potential that follows a shifted Lennard-Jones form, uM is an 

attractive Morse potential, and f(θ) is an orientation-dependent factor which is unity when 

θ < α and rapidly but smoothly decays to zero when θ crosses the edge of Janus 

boundary. The overall potential is proportional to an interaction parameter ε. We use the 

thermal energy kBT = 1 as the unit of energy, the particle diameter σ = 1 as the unit of 

length, and the particle mas m = 1 as the mass unit in our calculations, with the time scale 
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derived using these choices of scaling as τ = σ m/k
B
T . Details of the interaction 

potential and parameters can be found elsewhere [22]. 

In order to demonstrate the role of pressure anisotropy in governing the phase 

behavior, we employ a modified version of Martyna-Tobias-Klein’s NPT integrator 

which allows independent box length fluctuations along three coordinate axes [23]. This 

fully flexible cell method–which solves the coupled equations of motion for the 

thermostat and barostat– allows us to specify independent target pressures along different 

directions. Brownian dynamics simulations are performed on systems comprised of 1440 

colloidal particles with periodic boundaries, starting from an initial FCC lattice and 

allowing sufficient time for equilibration under given pressures. We take the lateral 

pressures pxx = pyy to be different from the normal one pzz, and investigate the phase 

behavior under various sets of pressures while fixing the Janus balance α and interaction 

strength ε. The simulations are repeated with doubled domain size as well as using 

different starting configurations to confirm the final equilibrium structures are not an 

artifact of the number of particles or the initial state.  

To quantify the orientational order, we use the order parameter <P2> obtained by an 

ensemble average over the second Legendre polynomial for the particle pair orientation 
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where Ni is the number of near neighbors of particle i lying within the potential cutoff, ui 

is the unit vector from the center of particle i directed to the center of its attractive cap, 

and the brackets <…> represent averaging over all particles iin the system [24]. If <P2> 

≈ 0, a rotator close-packed structure is formed with positional order but random 

orientations of the attractive caps, while higher values (taken here as <P2> > 0.3) 

correspond to a lamellar structure with both crystalline and orientational order in which 

particles form bilayers with attractive caps facing each other. 

Figure 1 shows the variation of pressure components pxx, pyy, pzz, volume fractionφ , 

mean inter-particle separations λx, λy, λz, and the order parameter <P2> for two different 

ratios of lateral to normal pressure. The particles are characterized by an attractive cap of 

α = 117 ° (shown in blue in the snapshots) and an interaction strength of ε/kBT = 1.05, 
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and the normal pressure is set to pzz= 8kBT/σ3 in both cases. We note that the pressures 

quickly approach the set values and fluctuate by <10%. The temperature also 

corresponded to the set value (kBT = 1) with limited fluctuations (not shown). Increasing 

the lateral pressure from pxx = pyy = 12kBT/σ3 to 16 results in ~1.4% increase in volume 

fraction, which can also be realized from the increased overall inter-particle separations. 

On the other hand, the order parameter <P2> and equilibrium renderings show a phase 

transition from rotator to lamellar upon lateral compression. Note that the system retains 

the FCC positional order in both phases, yielding equal numbers of crystalline neighbors 

[22]. 

To evaluate the nature of this transition and determine phase boundaries, we 

systematically tune the lateral and normal pressures for each particle/interaction type. 

Finding the phase at each state point requires simulatinga large system for more than 108 

 
FIG. 1 Temporal variation of pressure components p, volume fraction �, mean inter-particle 

separation λ in three directions, and orientational order parameter  along with equilibrated 

renderings, for a system of Janus colloids with α = 117º, ε/kBT = 1.05 subject to two different 

anisotropic pressure conditions: pzz = 8 kBT/σ3, and pxx = pyy = 12 (open symbols) or pxx = pyy = 16 

(filled symbols). 
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time steps to ensure sufficient statistics for evaluating the thermodynamic properties, 

which is done with GPUs using the Highly Optimized Object-Oriented Molecular 

Dynamics package (HOOMD) [25]. To improve the efficiency, we fix the pressure ratio 

pxx/pzz for any given α and ε, and ramp down the two pressures simultaneously to cover 

the desired range of normal pressure. The result is shown in Fig. 2(a) for the above 

particles subject to a pressure ratio of pxx/pzz = 2. Note that the ramping is done slowly 

enough that the system remains close to equilibrium at any point during the pressure 

reduction. To confirm this, we varied the rate of ramping for selected cases, and also 

verified a match with the properties found from long constant-pressure simulations as in 

Fig. 1. The phase behavior was also found to be reversible irrespective of the direction of 

pressure ramping (see Supplemental Material [26]). We can see that upon reaching a 

normal pressure of pzz = 6.5kBT/σ3, the order parameter <P2> undergoes a sudden drop. 

This discontinuity signifies a first-order transition between the two solid phases, from an 

orientationally-ordered structure to a disordered one. The snapshots indicate that the 

orientationally-ordered phase is lamellar with the caps oriented along the low-pressure (z) 

direction. When the transition occurs, the mean particle separation along z drops, 

meaning that the layers become more closely spaced as they lose orientational order, 

while λx, λy show a sudden jump, corresponding to lateral dilation. The net volume 

change is negligible as reflected in the nearly continuous variation of volume fraction. 

Thus the transition involves little movement of the particles but mainly just rotation in 

place, in response to mechanical actuation. Note that the mean separations along x,y are 

not equal since the box dimensions are commensurate with a close-packed hexagonal 

lattice. 

We performed several such simulations while tuning the pressure ratio pxx/pzz (with 

pxx = pyy = p||), and obtained a phase diagram for the alignment order parameter <P2> as 

a function of pressures. This is shown in Fig. 2(b) by color-coding <P2> for the above 

case of α = 117°, ε/kBT = 1.05 along with that for a higher interaction strength of ε/kBT = 

1.20. While application of an isotropic pressure does not induce orientational order in the 

solid phase, one can see a clear transition to a lamellar phase when pxx = pyy > pzz and the 

pressures are sufficiently high. The higher the pressure anisotropy, the lower the 

minimum normal pressure pzz required to trigger the formation of lamellae. Note that at 
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the lower-left corner of the phase plane, a fluid phase will be formed only under isotropic 

pressure conditions. Furthermore, increasing the interaction strength to ε/kBT = 1.20 

extends the lamellar region in the phase plane as the attractive caps have a higher 

tendency to align under similar pressures. We also note that on the left side of the phase 

diagram where pxx = pyy < pzz, a weakly-lamellar phase starts to form at the higher 

interaction strength, ε/kBT = 1.20. For this reversed pressure anisotropy, there are two 

low-pressure directions that compete to direct the orientation of the lamellae. We find 

that a pressure along the axisymmetry axis that is higher than that along the lateral 

directions can cause the lamellae to buckle, leading to a defective structure. Therefore, 

the maximum orientational order can be achieved by imposing a higher pressure along 

the two lateral directions than along the axisymmetry axis. This mechanically-actuated 

phase transition might have potential implications in designing novel materials e.g. 

tunable optical devices: an isotropic material with a white noise response to optical 

 
FIG. 2 (a) Variation of pressure components, volume fraction, mean inter-particle separations, 

and orientational order parameter for a system of Janus colloids with α = 117º, ε/kBT = 1.05 

subject to a constant lateral/normal pressure ratio of 2 while reducing pressure magnitude over 

time; (b) phase diagrams of color-coded order parameter as a function of applied pressures for 

particles with α = 117º and two different interaction strengths. 
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signals can be transformed into one with distinct response along two perpendicular axes 

upon imposing the proper pressure anisotropy. 

For all of the structures formed, we also quantify the director order parameter  

defined by [27] 

                                                                            
(3) 

where δ is the unit tensor, and u is the orientation vector of the Janus cap for each particle 

with respect to a director taken here as the z-axis. The variation of S with the normal 

pressure is shown in Fig. 3(a) for α = 117°, ε/kBT = 1.05, and different pressure ratios 

pxx/pzz. In all cases, the order parameter jumps from nearly zero to S* =0.43 ± 0.04 at the 

transition. The value of S* is obtained by fitting a straight line to the order parameter in 

the rotator phase SR(t) and a fifth-order polynomial to that of the lamellar region SL(t), 

and splicing them with a sigmoidal function, Ξ(t) = (1+exp[(t-t*)/C])-1, as S(t) = SR(t)+ 

Ξ(t) (SL(t) -SR(t)), leading to the order parameter at the transition as S* =SL(t*). The 

universal jump to S* ≈ 0.43 is characteristic of a Maier-Saupe (M-S) like transition which 

explains qualitatively the isotropic-to-nematic phase transition in thermotropic melts. The 

 
FIG. 3 (a) Director order parameter S as a function of normal pressure pzz for Janus colloids with 

α = 117º, ε/kBT = 1.05 subject to several lateral/normal pressure ratios, with the dashed red line 

indicating the order parameter at the transition according to the Maier-Saupe theory; (b) 

variation of S with ε for colloids with different Janus balance subject to fixed pressures of pxx = 

pyy = 16, pzz = 8 kBT/σ3; solid lines are polynomial-linear fits connected by a sigmoidal function. 

The inset shows variation of Maier-Saupe parameter uMS with ε within the lamellar region. 
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M-S theory takes into account only orientational entropy and anisotropic energetic 

contribution, but no aniosotropic shape-packing effects [28], and is therefore an 

inadequate model for most nematic liquid crystals, which are composed of molecules 

with large shape anisotropy, typically rod-like. However, we find that the M-S theory is a 

good model for our system, which is composed of geometrically isotropic spheres for 

which the tendency to orient is entirely due to the anisotropic Janus interactions and not 

at all due to shape anisotropy.  

To show the universality of this transition, we also evaluate the phase behavior while 

tuning the size of the attractive cap α and the interaction strength ε at constant imposed 

pressures of pxx = pyy = 16, pzz = 8 kBT/σ3. Figure 3(b) suggests a similar jump in S at 

transition for multiple values of Janus balance. It should be noted that the narrow range of 

α explored here is intended to localize the transition within the window of modest ε/kBT = 

0.8–1.4; the physics is similar for particles with smaller/larger Janus balance, but with the 

transition shifted to lower/higher interaction strengths. On the other hand, the phase 

diagram for any given attractive cap size α is generally similar to the ones shown in Fig. 

2(b), only with the lamellar region shifted to larger pressures upon increasing α. 

The Maier-Saupe potential is generally expressed as [27] 

V
MS

(u) = const −3/2u
MS
uu :S                                                                                          (4) 

where uMS is a phenomenological energy constant. A one-to-one mapping can be found 

between the order parameter S and the M-S interaction strength ݑெௌ at equilibrium [29, 

30]. Although this has been shown earlier using a closure approximation, we developed 

an exact self-consistent solution based on the imaginary error function (see Supplemental 

Material [26]). Using this mapping, we determined the dependency of uMS on the 

interaction strength ε for the cases plotted in Fig. 3(b). As shown in the inset, ݑெௌ scales 

almost linearly with ε, which is expected due to the nature of this phenomenological 

energy constant. Moreover, the transition in all cases appears to occur near uMS = 4.55, 

which is the criterion suggested by the M-S theory for isotropic-nematic phase transition. 

Therefore, single-patch Janus colloids are found to be an excellent model system whose 

solid-solid phase transition can be explained via the M-S theory. Note that the strength 

parameter ݑெௌ for the current system can be generally expressed as uMS(α ,ε, pxx, pzz), 

where its dependency on pressures can be obtained in a similar way by mapping S e.g. in 
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Fig. 3(a) onto uMS. This universal mapping of all system parameters onto a 

phenomenological constant governing the order can serve as a promising guideline in 

designing switchable colloidal crystals for optical and photonic applications [31]. 

To further evaluate the consistency of the observed phase behavior with the Maier-

Saupe theory, we also calculate the probability distribution function of particle 

orientations and compare it with the theoretical expression obtained by minimizing the 

free energy using the variational principle as [29] 

ψ (u) =C1 exp(3/2 S u
MS

cos2θ )                                                                                       (5) 

where the constant C1 is found using the normalization condition and θ is the angle 

between the orientation vector u of the Janus cap and the director. In Fig. 4, this 

comparison is shown for a system with α = 117°, ε/kBT = 1.05, pxx = pyy= 16, and pzz = 8 

kBT/σ3, which yields an ordered phase with S ≈ 0.55. The result (also confirmed for 

several other values of S) indicates reasonable agreement with slight deviation of the 

simulation data from the M-S theory. The source of discrepancy lies in the hexagonal in-

plane positional order of the Janus spheres, which produces a 60° periodicity in the 

interactions in the azimuthal φ-direction. To prove this, we considered a test case 

scenario of a Janus sphere surrounded by six near neighbors at fixed positions, all with 

 
FIG. 4 Histogram of the orientation distribution of Janus particles with α = 117º, ε/kBT = 1.05 

simulated under fixed pressures of pxx = pyy = 16, pzz = 8 kBT/σ3; the solid red line is the prediction 

of Maier-Saupe theory from Eq. (5); the inset shows variation of the overall potential in spherical 

coordinates for an extreme sample case with a rotating central particle. 
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their attractive caps facing the central particle. The potential was then calculated upon 

rotating the central particle in θ, φ directions, producing considerable variation along φ, 

as shown in the insert to Fig. 4. While this example is an extreme one, it shows that the 

distribution cannot be fully captured with a purely θ-dependent function as in Eq. (5).   

In conclusion, we have demonstrated a novel phase transition induced by anisotropy 

in pressure for spherical particles with anisotropic interactions. The key features of this 

solid-solid plastic crystal first-order transition are that it is induced without adjusting the 

temperature, volume fraction, or particle surface/interaction strength, and takes place 

with little translation of the constituent particles. Furthermore, we found that this solid-

solid transition bears similarities with the isotropic-nematic liquid-liquid crystalline 

transition in fluids. To the best of our knowledge, this is the first successful 

demonstration of the applicability of Maier-Saupe theory to a colloidal phase transition, 

which allows all significant aspects of the transition to be mapped onto a single pressure 

and temperature dependent parameter uMS, paving the way for rapid design and 

optimization of experimental Janus particle systems in advanced materials. 
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authors are also grateful to the Glotzer Group at University of Michigan for help with 
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