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We calculate the resonant inelastic X-ray scattering (RIXS) response of the Kitaev honeycomb model, an

exactly solvable quantum-spin-liquid model with fractionalized Majorana and flux excitations. We find that the

fundamental RIXS channels, the spin-conserving (SC) and the non-spin-conserving (NSC) ones, do not interfere

and give completely different responses. SC-RIXS picks up exclusively the Majorana sector with a pronounced

momentum dispersion, whereas NSC-RIXS also creates immobile fluxes, thereby rendering the response only

weakly momentum dependent, as in the spin structure factor measured by inelastic neutron scattering. RIXS

can therefore pick up the fractionalized excitations of the Kitaev spin liquid separately, making it a sensitive

probe to detect spin-liquid character in potential material incarnations of the Kitaev honeycomb model.

Quantum spins in a solid can, instead of ordering in a defi-

nite pattern, form a fluid type of ground state: a quantum spin

liquid (QSL) [1]. Theory predicts a remarkable set of collec-

tive phenomena to occur in such QSLs, including topological

ground-state degeneracy, long-range entanglement, and frac-

tionalized excitations. Beyond their clear theoretical appeal,

these exotic properties also find applications in the field of

topological quantum computing [2].

The Kitaev honeycomb model is an exactly solvable yet re-

alistic spin model with a QSL ground state [3]. Neighboring

S = 1/2 spins σx,y,z
r at the sites r of the honeycomb lat-

tice are coupled via different spin components along the three

bonds connected to any given site. The Hamiltonian is then

HK = −Jx
∑

〈r,r′〉x

σx
rσ

x
r′ − Jy

∑

〈r,r′〉y

σy
rσ

y
r′ − Jz

∑

〈r,r′〉z

σz
rσ

z
r′ ,

(1)

where Jx,y,z are the coupling constants for the three types of

bonds x, y, and z [see Fig. 1(a)]. Depending on Jx,y,z, the

model has two distinct phases. In the gapped (gapless) phase,

the ground state is a gapped (gapless) QSL. The spins fraction-

alize into two types of elementary excitations in both phases:

Majorana fermions and emergent gauge fluxes.

From an experimental standpoint, finding a physical real-

ization of the Kitaev honeycomb model has proven to be a

challenging task. So far, three types of honeycomb systems

have been proposed as candidate incarnations of HK : the iri-

dates α-A2IrO3 with A = Na or Li [4–6], the ruthenate α-

RuCl3 [7, 8], and ultracold atoms in optical lattices [9]. In

the iridates and the ruthenate, however, a potential spin-liquid

phase at low temperatures is preempted by magnetic order due

to residual magnetic interactions beyond HK [5, 10]. Never-

theless, since these interactions are typically small, the higher-

energy excitations above the energy scale setting the magnetic

order are expected to be governed by HK [8].

Given that QSLs are inherently defined in terms of a prop-

erty that they do not have (i.e., magnetic order), their experi-

mental identification and characterization is far from obvious

[1]. One potential hallmark of QSLs is the presence of frac-

tionalized magnetic excitations. For the Kitaev spin liquid,

it has been proposed that signatures of these excitations can

be observed by inelastic neutron scattering (INS) [11, 12] and

by Raman scattering (RS) with visible light [13]. However,

both of these methods have important limitations. In partic-

ular, neither of them can directly probe the highly dispersive

gapless Majorana excitations. INS displays an overall energy

gap and shows little momentum dispersion because it creates

two immobile flux excitations that dominate the response. RS

creates two Majorana excitations only and measures their den-

sity of states, but it is an inherently zero-momentum probe and

does not provide any information on their dispersion.
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FIG. 1: (a) Illustration of the honeycomb lattice. Sites in sublattice

A (B) are marked by white (black) circles, while x, y, and z bonds

are marked by dotted, dashed, and solid lines, respectively. (b) Flux

excitations φ around the photon-scattering site r (white circle) in the

final states |m〉 of the three fundamental NSC-RIXS channels with

amplitudes ∝ 〈m|σx,y,z
r

e−itH̃(r)|0〉 [see Eq. (3)], respectively. (c)

Illustration of the standard Brillouin zone (BZ), and the extended

Brillouin zone (EBZ) with respect to which the RIXS response is

periodic. The SC-RIXS response in Fig. 3 is plotted at special points

(black squares) [14] and generic representative points (red squares).

Using the exact solution of the Kitaev honeycomb model,

we demonstrate in this Letter that resonant inelastic X-ray

scattering (RIXS) can probe each type of fractionalized ex-

citation directly and independently. We establish that the four

fundamental RIXS channels, the spin-conserving (SC) and



2

the three non-spin-conserving (NSC) ones, do not interfere

and give completely different responses. The SC-RIXS chan-

nel does not create any fluxes and picks up exclusively the

Majorana fermions with a pronounced momentum dispersion.

Conversely, the NSC-RIXS channels involve flux creation and

therefore show little momentum dependence. In the physical

regime, they are found to map onto the respective components

of the spin structure factor measured by INS. Since the RIXS

response directly quantifies both Majorana and flux excita-

tions, it can serve as an effective probe of Kitaev-spin-liquid

character in any experimental candidate material.

Formalism.—When calculating the RIXS response, we con-

sider the L3-edge of the α-A2IrO3 iridates with the Ir4+ ion

being in a 5d5 configuration. However, as we later argue, our

results directly translate to other edges of Ir4+ or Ru3+, and

also to similar responses in ultracold atomic systems. RIXS

is a second-order process consisting of two dipole transitions

[15]. First, a photon is absorbed, and an electron from the 2p
core shell is excited into the 5d valence shell, thereby creating

a 2p core hole and an extra 5d electron. Second, an electron

from the 5d valence shell decays into the 2p core hole, and a

photon is emitted. The low-energy physics of the 5d electrons

at each Ir4+ ion is governed by a J = 1/2 Kramers doublet in

the t2g orbitals, and we assume that H ≡ HK is the effective

low-energy Hamiltonian acting on these Kramers doublets [4].

In terms of the corresponding Kitaev model, the 5d6 configu-

ration in the intermediate state is then described as a vacancy

or, equivalently, a non-magnetic impurity.

The initial and the final states of the RIXS process are

|0〉 ⊗ |Q, ǫ〉 and |m〉 ⊗ |Q′, ǫ′〉, respectively, where |0〉 is

the ground state of the Kitaev model, |m〉 is a generic eigen-

state with energy Em with respect to |0〉, while Q (Q′) is

the momentum and ǫ (ǫ′) is the polarization of the incident

(scattered) photon. During the RIXS process, a momentum

q ≡ Q − Q′ and an energy ω = Em is transferred from the

photon to the Kitaev spin liquid. The total RIXS intensity is

I(ω,q) =
∑

m |
∑

α,β TαβAαβ(m,q)|2 δ(ω − Em), where

Tαβ is a spin-space polarization tensor depending on the mi-

croscopic details of the RIXS process (i.e., the ion type, the

edge type, and the photon polarizations), and Aαβ(m,q) is

the scattering amplitude from |0〉 ⊗ |Q, ǫ〉 to |m〉 ⊗ |Q′, ǫ′〉.
This amplitude is given by the Kramers−Heisenberg formula:

Aαβ(m,q) =
∑

r,ñr

〈m|dr,α|ñr〉〈ñr|d
†
r,β |0〉

Ω− Eñ + iΓ
eiq·r, (2)

where Γ is the inverse lifetime of the core hole, Ω is the energy

of the incident photon with respect to the resonance energy

(i.e., the energy difference between the 5d and the 2p shells),

and the operator d†r,σ promotes a 2p electron with spin σ at

site r into a 5d state at the same site. In terms of the Kitaev

model, this operation is equivalent to an electron with spin −σ
being annihilated at site r. The intermediate state |ñr〉 is then

a generic eigenstate of the Kitaev model with a single vacancy

at site r that has energy Eñ with respect to the ground state

|0̃r〉 of the same model. Note that we use a tilde to distinguish

the model with a vacancy (intermediate states) from the one

without a vacancy (initial and final states).

The four fundamental RIXS channels are introduced by de-

composing the polarization tensor into Tαβ = Pησ
η
αβ with

η = {0, x, y, z}, where σ0 is the identity matrix, and σx,y,z

are the Pauli matrices. In the spin-conserving (SC) channel

with Tαβ ∝ σ0
αβ , the spin of the 5d valence shell does not

change during the RIXS process, while in the three non-spin-

conserving (NSC) channels with Tαβ ∝ σx,y,z
αβ , the same spin

is rotated by π around the x, y, z axes, respectively. For the

L3-edge of the Ir4+ ion, the SC coefficient is P0 = ǫ
′∗ · ǫ,

while the NSC coefficients are Px = i(ǫ′∗y ǫz − ǫ′∗z ǫy) and Py,z

its cyclic permutations [16].

Our first main result is that the four RIXS channels do not

interfere in the case of the Kitaev model because they result in

mutually orthogonal final states. In particular, the final state

has no flux excitations for the SC-RIXS channel, while it has

two flux excitations separated by x, y, z bonds for the three

NSC-RIXS channels, respectively [see Fig. 1(b)]. We pro-

vide a detailed derivation of this result in the Supplementary

Material (SM). For any scattering geometry and polarizations,

the total RIXS intensity I(ω,q) is then a sum of four individ-

ual intensities Iη(ω,q) =
∑

m |Aη(m,q)|2 δ(ω − Em) cor-

responding to the four channels η = {0, x, y, z}. It is derived

in the SM that the individual RIXS amplitudes are

Aη(m,q) ∝
∑

r

∫ ∞

0

dt e−Γt+iΩt+iq·r〈m|ση
r e

−itH̃(r)|0〉,

(3)

where H̃(r) = H +
∑

κ=x,y,z Jκσ
κ
r σ

κ
κ(r) is the Hamiltonian

of the Kitaev model with a single vacancy at site r. The spin

at site r is effectively removed from the model by being de-

coupled from its neighbors at sites κ(r) [17].

Since the inverse lifetime Γ is by far the largest energy scale

in both the iridates α-A2IrO3 [18] and the ruthenate α-RuCl3
[8, 19], we employ the fast-collision approximation to RIXS,

for which Γ → ∞ and hence t ∼ 1/Γ → 0. Expanding

e−itH̃(r) up to first order in Jx,y,z/Γ, integrating over t, and

demanding H |0〉 = 0 by adding a trivial constant term to H ,

the RIXS amplitudes in Eq. (3) become

Aη(m,q) ∝
∑

r

eiq·r〈m|ση
r

[

1−
iH̃(r)

Γ

]

|0〉 (4)

=
∑

r

eiq·r〈m|ση
r

[

1−
i

Γ

∑

κ

Jκσ
κ
r σ

κ
κ(r)

]

|0〉,

where we also set Ω = 0 for simplicity by recognizing that

its exact value does not matter as long as Ω ≪ Γ. We em-

phasize that the final form of Eq. (4) is expected to be generic

beyond the L3-edge of the Ir4+ ion. For any relevant RIXS

process, the couplings in the intermediate state are perturbed

(i.e., weakened or switched off) around the photon-scattering

site r, and an analogous calculation in the fast-collision ap-

proximation would then give an identical first-order result, up

to a potential renormalization of Γ.
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Given that the Kitaev model is exactly solvable both in the

presence and in the absence of a vacancy [17, 20], the RIXS

amplitudes in Eq. (4) can be evaluated exactly. Our calcula-

tion follows the usual procedure [3]. We first take care of the

static (and local) fluxes, then introduce Majorana fermions to

obtain a quadratic fermion problem for each flux configura-

tion, and finally deal with the resulting free-fermion problems

by means of standard methods. However, due to technical rea-

sons (see SM), the RIXS intensities are calculated differently

for the SC and the NSC channels [21].

For the SC channel, we evaluate A0(m,q) for each indi-

vidual final state |m〉, and obtain I0(ω,q) as a histogram of

|A0(m,q)|2 in terms of the final-state energies ω = Em. In

the language of Ref. 21, this method corresponds to the few-

particle approach. Indeed, it follows from Eq. (4) that, up

to first order in Jx,y,z/Γ, there are two types of final states

with a non-zero RIXS amplitude: |m〉 = |0〉 with no exci-

tations at all, and |m〉 6= |0〉 with no flux and two fermion

excitations. Since scattering back into the ground state |0〉
corresponds to a purely elastic process, we restrict our atten-

tion to the |m〉 6= |0〉 final states with two fermion excita-

tions at momenta k and q − k. The energy of such a state is

Em = εk + εq−k, where εk = 2|λk| is the energy of a single

fermion, and λk ≡
∑

κ=x,y,z Jκe
ik·r̂κ in terms of the three

bond vectors r̂x,y,z pointing from any site in sublattice A to

its respective neighbors in sublattice B [see Fig. 1(a)]. The

SC-RIXS intensity is then derived in the SM to be

I0(ω,q) ∝

∫

BZ

d2k δ(ω − εk − εq−k) [εk − εq−k]
2

×
∣

∣1− eiϕk eiϕq−k
∣

∣

2
, (5)

where eiϕk ≡ λk/|λk| is a phase factor between the two sub-

lattices. Since the bond vectors r̂x,y,z are not lattice vectors,

the intensity is not periodic with respect to the standard Bril-

louin zone (BZ), but with respect to the extended Brillouin

zone (EBZ) illustrated in Fig. 1(c).
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FIG. 2: Momentum-integrated RIXS intensities at (a) the isotropic

point of the gapless phase [Jx,y,z = J0] and (b) a representative

point in the gapped phase [Jx,y = J0/2 and Jz = 2J0]. The SC

response I0(ω) is plotted by a solid line, while the NSC responses

Ix,y,z(ω) are plotted by dashed and/or dotted lines. Each response is

normalized such that
∫
dω Iη(ω) = 1. At the gapped point, the NSC

response Iz(ω) has a delta peak at low energies and is multiplied by

10 to be comparable with the other responses.

For the NSC channels, we consider the RIXS intensity di-

rectly and rewrite it as Iκ(ω,q) ∝
∫ +∞

−∞ ds eiωsKκ(s,q) in

terms of a time-like variable s. It is derived in the SM that the

kernel of the resulting integral takes the form

Kκ(s,q) = 〈0|
[

σκ
0 eiH̃(0)/Γ + σκ

r̂κ
eiH̃(r̂κ)/Γ−iq·r̂κ

]

e−isH

×
[

σκ
0 e−iH̃(0)/Γ + σκ

r̂κ
e−iH̃(r̂κ)/Γ+iq·r̂κ

]

|0〉,

where 0 is any site in sublattice A. In the language of Ref. 21,

this method corresponds to the determinant approach. Indeed,

the ground-state expectation values in Kκ(s,q) can be evalu-

ated as functional determinants (see SM). We remark that the

NSC-RIXS response Iκ(ω,q) reduces to the corresponding

component κ of the spin structure factor [12] in the limit of

Γ → ∞. This result is in contrast with SC-RIXS, where the

inelastic response disappears in the same limit.

Results.—We first discuss the momentum-integrated RIXS

intensities Iη(ω) =
∫

EBZ
d2q Iη(ω,q). In Fig. 2, the SC and

NSC responses are plotted for representative points of both

the gapless (a) and the gapped (b) phases. All of our responses

are universal in the sense that their functional forms do not de-

pend on the precise value of Γ ≫ Jx,y,z. Also, some or all of

the NSC responses can be identical due to symmetry. Since

the maximal fermion energy is 2
∑

κ Jκ = 6J0 at both repre-

sentative points, the responses with maximal energies ≈ 6J0
and ≈ 12J0 can be identified as predominantly one-fermion

and two-fermion responses, respectively [21]. Similarly, any

delta peak close to zero energy corresponds to a zero-fermion

response. Unlike the NSC responses, the SC response is al-

ways dominated by two-fermion excitations. Furthermore, the

SC and NSC responses have different low-energy behavior in

the gapless phase. The NSC response has an energy gap due

to flux creation, while the SC response is found to vanish as

∝ ω5 in the limit of ω → 0. Three powers of ω come from

the two-fermion density of states around the Dirac points [22],

and two further powers appear due to the factor [εk − εq−k]
2

in Eq. (5), which indicates that the fermions at lower energies

are perturbed less by the presence of the vacancy [23].

The differences between the SC and NSC responses be-

come even more evident when we consider the momentum-

resolved RIXS intensities Iη(ω,q). In Fig. 3, the SC response

is plotted for the representative points of the two phases. The

fractionalized nature of the excitations is indicated by the lack

of delta peaks corresponding to well-defined ω(q) dispersions

in the spectrum. Nevertheless, the response has a pronounced

momentum dependence and is therefore able to probe the dis-

persions of the individual excitations directly. For example, in

the gapless phase, the Dirac points K in the fermion disper-

sion manifest themselves in gapless responses around the Γ,

K, and K̃ points of the EBZ. However, the response actually

vanishes at the Γ and K̃ points due to the factor [εk − εq−k]
2

in Eq. (5) and the fermion dispersion being symmetric around

these points. There is a further depression of the response

around the Γ point due to a destructive interference between

the two sublattices, as indicated by the minus sign in the factor
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FIG. 3: Momentum-resolved SC-RIXS intensities at the isotropic point of the gapless phase [Jx,y,z = J0] (a, b, c) and at a representative

point in the gapped phase [Jx,y = J0/2 and Jz = 2J0] (d, e, f). The response is plotted along the entire M̃z-Kz-Γ-Mz-K̃-M̃z cut (a, d),

at specific points on the Γ-Kz-M̃z cut (b, e), and at specific points on the Γ-Mz cut (c, f) [see Fig. 1(c)]. The intensity is normalized such

that
∫
dω

∫
d2q I0(ω,q) = 1, where q is measured in units of a−1 ≡ |r̂x,y,z|

−1 and is integrated over the entire EBZ. Some responses are

multiplied by numerical factors (written next to them) to be comparable with other responses.

|1 − eiϕk eiϕq−k |2 of Eq. (5). This effect arises because the

fermions transform projectively under inversion and is there-

fore a direct signature of their fractionalized nature [24]. We

also remark that, unlike the NSC responses, the SC response

is invariant under Jx,y,z → −Jx,y,z.

In contrast to the SC response, the NSC responses show

little momentum dependence because the localized fluxes cre-

ated by them can absorb momentum well. In fact, we find that

the three NSC-RIXS components are virtually indistinguish-

able from the corresponding components of the spin struc-

ture factor [12] in the Γ/J0 & 100 regime, which is physi-

cally relevant for both α-A2IrO3 [18] and α-RuCl3 [8, 19].

NSC-RIXS can therefore fully determine the spin structure

factor in the iridates, for which INS is challenging due to the

large neutron-absorption cross section of iridium. Although

RIXS is currently limited by its energy resolution ∆ω ∼ J0
[25], this technique has been improving rapidly, and therefore

∆ω ≪ J0 is a distinct possibility for the near future.

We finally discuss the RIXS responses at a generic point of

the Kitaev-spin-liquid phase, which corresponds to a generic

time-reversal-invariant perturbation with respect to HK . For

the NSC-RIXS channels, the results in Ref. 22 are directly

applicable and imply that the response is generically gapless.

For the SC-RIXS channel, a similar analysis indicates that the

response no longer vanishes at the Γ and K̃ points and that

I0(ω) takes the low-energy form of ∝ ω3 instead of ∝ ω5 in

the most generic case. However, since the characteristic lower

edge of the spectrum in Fig. 3 is robust, we expect that SC-

RIXS remains an effective probe of the fermion dispersion

for a generic Kitaev spin liquid. Furthermore, some higher-

energy features are believed to persist even beyond the phase

transition into the magnetically ordered phase [8].

Conclusions.—Calculating the exact RIXS response of the

Kitaev honeycomb model, we have found that the four fun-

damental RIXS channels, the SC and the three NSC ones,

do not interfere and correspond to completely different re-

sponses. In the physically relevant regime, the SC response

displays a pronounced momentum dependence and picks up

the gapless Majorana fermions, while the NSC responses are

only weakly momentum dependent and recover the respective

components of the spin structure factor. We therefore believe

that RIXS can serve as an effective probe of spin-liquid char-

acter in present and future candidate materials for the realiza-

tion of the Kitaev honeycomb model.
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