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We consider the efficiency limit of relativistic high-order-harmonic emission from solid targets
achievable with tailored light fields. Using one-dimensional particle-in-cell simulations, the maxi-
mum energy conversion efficiency is shown to reach as high as 10% for the harmonics in the range
of 80-200 eV and is largely independent of laser intensity and plasma density. The waveforms most
effective at driving harmonics have a broad spectrum with a lower frequency limit set by the width
of the incident pulse envelope and an upper limit set by the relativistic plasma frequency.

Relativistic high-order-harmonic generation (HHG)
using reflection from solid-density targets may provide a
mechanism for the efficient production of high-intensity
phase-locked extreme-ultraviolet and x-ray radiation [1–
9], potentially allowing the exploration of new regimes
in non-linear attosecond optics at intensities beyond the
capabilities of gas-based HHG [10]. In the relativistic
regime, over-dense-plasma HHG can be described by the
coherent synchrotron emission model [11–13], in which,
during each optical cycle, a dense bunch of electrons is co-
herently driven by the laser and plasma fields through an
instantaneously synchrotron-like orbit, emitting a sub-
femtosecond burst of intense high-frequency radiation.
Despite advances in femtosecond technology to petawatt
peak powers, relativistic HHG remains limited by on-
target laser intensity, so methods to increase conversion
efficiency at fixed intensity are critical. The efficiency
of HHG, defined here as either the fraction of incident
laser energy up-converted to particular high harmonics
or the ratio of brightest attosecond pulse intensity to
incident laser intensity, is strongly affected by laser in-
tensity, target density, angle of incidence [14], and small
density gradients on the target surface [15]. Both mea-
sures of efficiency depend directly on the rate at which
harmonic intensity (I) decreases for increasing harmonic
frequency (ω), with the applicability of various proposed
scaling laws, e.g. I(ω) ∝ ω−8/3 [16] or I(ω) ∝ ω−4/3 [13],
debated vigorously in the literature [12, 17–20]. With
the aim of increasing HHG efficiency at fixed laser inten-
sity, driving laser beams containing two [21–24] or more
[25, 26] colors have been studied; recent results suggest
that multiple-color beams can be substantially more ef-
fective than equivalent-energy single color beams across
a broad range of conditions. To understand the predicted
enhancement and effectively use recent advances in short-
pulse waveform synthesis [27, 28], we comprehensively
study manipulation of the driving waveform, finding a
limit on the efficiency of relativistic HHG and demon-
strating a method for reaching it.

The balance between the incident-laser light pressure
and the space-charge field of the target plasma governs
the behavior of solid-target relativistic HHG. The laser is
characterized by its normalized amplitude (a0 = E0/Erel,

where Erel = meωLc/e, E0 is the maximum electric field,
ωL is the laser frequency, and e and me are the charge
and mass of an electron), and the strength of the plasma
response is determined by its density (N = ne/nc where
nc = meω

2
L/4πe

2 is the plasma critical density and ne
is the electron number density). The similarity parame-
ter S = N/a0, which arises from analysis of the Vlasov-
Maxwell equations for a0 � 1 [29], is key to describ-
ing HHG, because the electron dynamics at a0 � 1
depend primarily on S rather than N or a0 separately
[16, 30]. The interaction physics may be moved to a
more efficient regime by manipulating the laser frequency
(S ∝ 1/ωL) since for a0/N < 0.5, common for current ex-
periments, efficiency increases at higher frequencies [21].
However, gains from frequency doubling or tripling are
limited, particularly if the objective is the generation of
isolated attosecond pulses, because a frequency-doubled
beam will contain twice as many optical cycles under its
envelope.

Let us consider an incident laser with fixed fundamen-
tal frequency ωL, of which an arbitrary energy fraction
(Wn/W ) is converted to other frequencies (ωn) with spec-
ified relative phase (φn), under the constraint that the to-
tal beam must remain periodic with TL = 2π/ωL. This
allows arbitrary waveforms with period TL and restricts
us to harmonics of the fundamental frequency. Here we
use a genetic algorithm to search the (2n−1)-dimensional
space [φ1,...n,W2,...n] for n ≤ 20 with particle-in-cell
(PIC) simulations (EPOCH [31]), aiming to either max-
imize the intensity of attosecond pulses or the energy in
high-frequency portions of the reflected spectrum (ω >
20ωL); optimizing for either measure resulted in similar
waveforms. To check for convergence to local minima, at
each condition our optimization algorithm was run with
12 different initial populations for each n between 1 and
20. Since each optimization represents up to 5000 sim-
ulations in 50-200 member populations, every set of pa-
rameters was studied with 2× 105 to 1.2× 106 separate
simulations. All reported optimization results use one-
dimensional PIC simulations with a spatial resolution of
λ/600 and between 20 and 200 particles in each cell, de-
pending on the target density. At relativistic intensities
(> 2 × 1018 W/cm2), we may treat the plasma as pre-
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FIG. 1: (a) Attosecond pulse generation efficiency (Ia/IL) for
driving pulses with 10% of incident energy in the nth har-
monic with phase φn. (b) Maximum and minimum genera-
tion efficiency achieved for varied φn at fixed n. Attosecond
pulses are found by filtering the reflected spectrum so that
20 < ω/ωL < 100. For all points, N = 400, a0 = 40, and
θL = 30◦.

ionized, and for short laser pulses (τ < 20 fs FWHM), the
ions may be treated as immobile. Driving laser pulses at
non-normal angles of incidence (θL > 0) were p-polarized
and, where not otherwise indicated, we used single cycle
(τ = 3 fs FWHM) pulses with fundamental wavelength
λ = 800 nm.

Light at frequencies substantially above the plasma fre-
quency (ω2

p = 4πnee
2/me) will pass through the plasma

front with little interaction, so high-frequency compo-
nents (ωn = nωL) should have a decreasing effect for
increasing harmonic number n. At relativistic intensi-
ties (a0 � 1), the effective plasma frequency (ωpR) de-
creases due to the relativistic increase in electron mass
(ωpR/ωL =

√
N/γ ≈

√
N/a0), further reducing the

highest frequency that will strongly interact with the
plasma. Figure 1 demonstrates this for an incident
waveform where 10% of the energy in the fundamental
(λ = 2πc/ωL = 800 nm) frequency is converted to its
nth harmonic, and the attosecond pulse generation effi-
ciency (η = Ia/IL, where I is the maximum intensity of
(a) the attosecond pulse or (L) the incident laser) is mea-
sured for varied second-color phase (φn). As n increases
to 15, both the maximum enhancement and maximum
suppression (Fig. 1b) converge to the same value after
reaching a maximum difference for n near ωpR/ωL (for
the parameters in Fig. 1, ωpR/ωL = 3.2). This suggests
that the optimized solution will be found for finite n of or-
der ωpR/ωL, making the optimization problem tractable
for the parameters of interest.

In contrast to gas-phase HHG, where the optimal wave-
form consists of a linear ramp and DC offset [32–34],
the optimal waveforms for relativistic HHG are single
oscillations of the electric field with an effective fre-
quency directly related to the relativistic plasma fre-
quency (Fig. 2). This holds true whether we consider sin-
gle cycle (3 fs) or multi-cycle (15 fs) incident pulses. Fig-
ure 2 presents (a) optimized waveforms and (b) the corre-
sponding reflected spectra for incident beams containing
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FIG. 2: (a) Optimal waveform at N = 400, a0 = 40, and θL =
30◦ for n = 1, 3, 5. The n = 5 solution (fundamental and first
four harmonics) is the global optimum, with no additional
enhancements seen for including 6 or more frequencies. Inset:
fraction of incident energy contained in each frequency. (b)
Corresponding spectra of incident and reflected fields, with
ω−8/3 scaling indicated for reference.

one, three, or five frequencies; for a0 = 40 and N = 400,
increasing n above five does not further increase η. The
energy (inset, Fig. 2a) is distributed relatively equitably
among the different frequencies for n = 5, highlighting
the importance of both the low (ωL) and high (5ωL) fre-
quency components in building an optimal waveform.

The HHG efficiencies of optimized waveforms set a
limit substantially higher than any efficiencies that have
been previously demonstrated. For example, of the inci-
dent energy in the n = 5 optimized waveform in Fig. 2,
14% is absorbed by the plasma, 23% is reflected in the
first five harmonics, and 63% is converted to higher fre-
quencies (ω ≥ 6ωL). In comparison to previous PIC sim-
ulations which found up to 0.6% of the incident energy
reflected in the 80-200 eV (52 ≤ ω/ωL ≤ 129) zirconium
filter range using a L/λ = 0.25 density gradient [35],
for our optimized waveform this interval contains 10% of
the incident energy. Manipulation of incident frequencies
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FIG. 3: Attosecond pulse generation efficiency (Ia/I)
achieved with optimization over n frequencies. Where not
otherwise noted, the simulation parameters are N = 400,
a0 = 40, θL = 30, L/λ = 0, and τ = 3 fs, and attosecond
pulse intensity is calculated by filtering out frequencies lower
than 20ωL. Panels (a-d) show the effect of varying (a) N , (b)
a0, (c) θL, and (d) L/λ. In (d), a0 = 20 and Nmax = 200.

may therefore allow far higher HHG efficiencies.

For different experimental parameters the optimized
waveforms are qualitatively similar and give the same
pulse generation efficiency (Ia/IL). Variations in a0,
N and L/λ appear to change only the number of in-
cident frequencies required to reach the optimal value,
not the maximum value of the pulse generation efficiency
(Fig. 3). From Fig 3a and b, the number of frequencies
required required to produce an optimal waveform is ap-
proximately proportional to

√
N/a0, which is consistent

with the observation that incident frequencies substan-
tially above the plasma frequency have little effect on
HHG. In contrast to n = 1, where the efficiency of at-
tosecond pulse generation varies with angle of incidence
by orders-of-magnitude, Fig. 3c shows a slight depen-
dence of optimized efficiency on angle of incidence (θL).
The efficiency of HHG is also less affected by the expo-
nential density gradient scale length (L/λ) for optimized
waveforms. Taken together, the plots in Fig. 3 suggest
that the maximum possible HHG efficiency is consistent
over a wide range of initial conditions.

From a synchrotron model for attosecond pulse emis-
sion, the effective laser frequency seen by the driven elec-
tron bunches prior to emission is set by the time between
the zero-crossing-point of the experienced field (near t2)
and the electron interaction with the field maximum (at
t3) [11, 25]. Since the displacement into the plasma for
a0/N < 0.5 tends to be small compared to the wave-
length (≈ λ/10), we can neglect the effect of relativis-

tic electron motion in calculating the effective frequency
of the driving field. The inset of Fig. 4 shows the tra-
jectory of an emitting electron bunch, with key times
marked; an attosecond pulse is generated at t3. Taking
the time between t2 and t3 to be one quarter of the effec-
tive laser period [TLE = 4(t3 − t2)], we can calculate an
effective laser frequency (ωLE = 2π/TLE), which, nor-
malized by the laser fundamental frequency, forms the
y-axis of Fig. 4. Comparison of ωLE for optimal wave-
forms at different values of a0 and N to the relativistic
plasma frequency ωpR/ωL ≈

√
N/a0 in Fig. 4 shows that

the optimal waveform matches the timescales of the laser-
driven and space-charge-driven motions. In the relativis-
tic transparency regime (N/a0 ≈ 1), the fundamental fre-
quency is higher than the relativistic plasma frequency,
so the addition of higher harmonics is not advantageous
and the relationship between ωLE and

√
N/a0 begins to

break down. Note that the ωLE often lies at approxi-
mately half the value of the highest frequency necessary
for optimization.

The limits of waveform optimization are well visual-
ized by plotting the optimal achievable efficiency (Ia/IL)
against a0/N (Fig. 5). The highest gains due to waveform
shaping are seen for a0/N < 0.5, where even two-color
driving beams (n = 2) can produce attosecond pulses
two orders of magnitude more intense than comparable
single-frequency beams. The frequency matching physics
that underlie the shape of the optimized waveform are
evidenced by the convergence of the n-frequency opti-
mization lines (triangles) with the global optimum at
smaller values of a0/N for larger values of n. We must
emphasize that to optimize the waveform it is not suffi-
cient to use a single frequency beam with ωL ≈ ωpR, i.e.
a0 ≈ N . The factor-of-four gap between the maximum
efficiency achieved with single frequency beams (circles)
at a0/N ≈ 0.5 and the optimal efficiency there shows
that additional component frequencies always provide
some benefit. For all a0/N ≤ 0.5, the optimal driving
waveform contains subcycle field transitions with an ef-
fective frequency of ωpR and minimizes the total number
of strong field features under the pulse envelope.

It is important to note that the fundamental frequency
of the optimized waveforms contains a significant fraction
of the energy. Since our analysis is normalized by ωL, this
suggests that for pulse envelopes longer than single cycle
at ωL it will be advantageous to also add lower-frequency
light, phase-matched to produce a waveform with a sin-
gle strong oscillation. This is also in agreement with the
observation that longer driving pulses at fixed frequency
will tend to produce lower maximum intensities due to
disruption of the plasma surface by repeated strong in-
teractions. Fig. 6 compares the attosecond pulse train
produced by a 30 fs driving pulse containing only λ = 800
nm light with a pulse where W0.5/W = W0.25/W = 0.1,
demonstrating that the addition of low frequencies re-
sults in a strong isolated attosecond pulse rather than a
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FIG. 4: Relativistic plasma frequency (dashed line) compared
to the effective laser frequency (ωLE) of optimal incident
waveform for varied target density to laser amplitude ratio.
The effective laser frequency is calculated by taking the time
between the zero-crossing of the field at t = 0 (near t2) and
the maximum field intensity (at t3) as one quarter of the effec-
tive laser period. Incident waveforms are shown for selected
points at N/a0 = 0.5, 10, and 40. The error bars indicate
the range of effective frequencies calculated from waveforms
producing within 5% of the maximum efficiency at those pa-
rameters. Inset: The trajectory of an emitting electron bunch
for normal incidence geometry, with the ion positions marked
by the vertical line and the laser incident from the left. Elec-
trons begin near the center of the schematic, are pushed away
from the ions between t1 and t2, and then turn before emitting
at t3.

train of weak pulses. The bandwidth required to produce
an optimal waveform is set at its upper limit by the rel-
ativistic plasma frequency and at its lower limit by the
duration of the pulse envelope; the addition of infrared
light may therefore be advantageous for relativistic HHG.

Though current experimental systems are not capa-
ble of producing fully optimized pulses at the intensi-
ties discussed here, rapid progress in the development of
broad bandwidth synthesized waveforms [27, 28], includ-
ing multi-mJ multi-octave pulses [36] and the delivery of
80 mJ in 5 fs using two-color pumping for optical para-
metric chirped pulse amplification [37], suggests a path
towards the experimental study of relativistic HHG with
arbitrary waveforms.

In conclusion, we have found the maximum effi-
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FIG. 5: Efficiency of attosecond pulse generation (filtered by
ω/ωL > 20) for optimized (black squares) and single fre-
quency [n = 1] (circles) driving waveforms with varied a0
and N at θ = 30◦. The maximum efficiencies achieved with
a restricted number (n = 2-5) of available frequencies (trian-
gles) illustrates the number of harmonics required to build an
optimal waveform as a function of a0 and N .

FIG. 6: Attosecond pulse trains (filtered by 10 < ω/ωL <
100) produced by 30 fs (FWHM, field) incident pulses at ei-
ther (a) λ = 0.8 µm or (b) a mixture of 0.8, 1.6, and 3.2 µm
light with N = 400, a0 = 40, and θL = 30◦. The left vertical
axis is for the incident electric field (light gray) and its enve-
lope, and the right axis is the scale for the attosecond pulse
intensity.

ciency for relativistic high-order harmonic generation and
demonstrated that it can be achieved through waveform
control of the driving laser. The optimal waveform is
constructed from a broad bandwidth with high frequen-
cies to match the relativistic plasma frequency and low
frequencies with period comparable to the pulse enve-
lope duration. We show, for example, that when the re-
flected pulse is filtered to discard frequencies below 20ωL,
the remaining attosecond pulses may be up to ten times
brighter than the incident pulse, with this limit depend-
ing only weakly on angle of incidence and not on laser
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intensity or target density. At a 30◦ angle of incidence,
63% of the incident laser energy may be shifted above its
initial bandwidth. This study provides an understand-
ing of the waveform-shape dependence of HHG, finds the
maximum efficiency of relativistic high-order harmonic
generation, and suggests experimental paths towards en-
hanced relativistic HHG by combining the driving laser
fundamental frequency with lower and higher frequency
light.
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