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Internal	stresses	lead	to	net	Forces	and	Torques	on	Extended	Elastic	Bodies	

Hillel	Aharoni1,2,	John	Kolinski1,	Michael	Moshe1,3,4,	Idan	Meirzada1,	Eran	Sharon1*	

Abstract:	 A	 geometrically	 frustrated	 elastic	 body	 will	 develop	 residual	 stresses	 arising	 from	 the	

mismatch	between	 the	 intrinsic	 geometry	of	 the	body	and	 the	geometry	of	 the	ambient	 space.	We	

analyze	 these	 stresses	 for	an	ambient	 space	with	gradients	 in	 its	 intrinsic	 curvature,	 and	 show	 that	

residual	 stresses	 generate	 effective	 forces	 and	 torques	 on	 the	 center	 of	 mass	 of	 the	 body.	 We	

analytically	calculate	these	forces	in	two	dimensions,	and	experimentally	demonstrate	their	action	by	

the	migration	of	a	non-Euclidean	gel	disc	in	a	curved	Hele-Shaw	cell.	An	extension	of	our	analysis	to	

higher	dimensions	shows	that	these	forces	are	also	generated	in	three	dimensions,	but	are	negligible	

compared	to	gravity.	

Geometrical	 frustration	occurs	when	 the	geometry	of	a	confining	space	prevents	an	extended	

system	from	being	at	its	local	ground	state	at	every	point;	examples	abound	in	physics,	including	glasses	

and	 the	 anti-ferromagnetic	 Ising	 model	 on	 a	 triangular	 lattice	 [1].	 When	 an	 elastic	 body	 undergoes	

differential	 growth	 [2],	 swelling	 [3],	or	 thermal	expansion	 [4],	 it	might	become	 frustrated.	This	occurs	

when	 its	 intrinsic	 geometry	 is	 non-Euclidean,	 a	 geometry	which	 is	 incompatible	with	 the	 ambient	 3D	

Euclidean	 geometry.	 This	 incompatibility	 leads	 to	 the	 accumulation	 of	 residual	 stresses	 whose	

magnitude	 depends	 both	 on	 the	 extent	 of	 incompatibility	 and	 on	 the	 dimensions	 of	 the	 body	 [5].	

Frustrated	 solids	 that	 are	 not	 perfectly	 elastic	 can	 relax	 their	 frustration	 via	 changes	 in	 their	 intrinsic	

geometry,	namely	by	generating	inelastic	deformations.	For	example,	a	flat	crystalline	sheet	constrained	

to	a	spherical	shell	must	be	strained;	however,	it	can	reduce	its	elastic	energy	by	nucleating	defects	[6-

11]\footnote{	 While	 the	 forces	 acting	 on	 such	 defects	 arise	 from	 a	 mismatch	 between	 the	 intrinsic	

geometry	 of	 the	 defect	 and	 the	 geometry	 of	 the	 embedding	 space,	 there	 is	 no	 change	 to	 the	 body’s	
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center	of	mass.}.	These	defects	change	 the	 intrinsic	geometry	of	 the	sheet	 to	more	closely	match	 the	

shell’s	geometry,	thus	reducing	the	geometrical	frustration	and	therefore	the	residual	energy.	

It	 was	 recently	 shown	 that	 structural	 defects	 in	 crystalline	 solids	 experience	 an	 effective	

“geometrical	 force,”	 which	 is	 derived	 from	 the	 residual	 energy	 [12].	 For	 example,	 disclinations	 in	 a	

hexagonal	 2D	 lattice	 that	 is	 confined	 to	 a	 curved	 2D	 surface	 experience	 a	 force	 [13],	 which	 is	 the	

derivative	 of	 the	 residual	 elastic	 energy	 with	 respect	 to	 the	 position	 of	 the	 defect.	 	 However,	 the	

effective	 force	 exerted	 upon	 structural	 defects	 does	 not	 imply	 a	 change	 in	 the	 momentum	 of	 the	

extended	body.	Instead,	their	resultant	motion	or	acceleration	can	be	accomplished	by	rearrangement	

of	 internal	 degrees	 of	 freedom	within	 the	 body.	 In	 this	 letter,	 we	 show	 that	 residual	 stresses	might	

accumulate	 into	 net	 forces	 and	 torques	 acting	 on	 an	 extended	 body	 as	 a	 result	 of	 the	 presence	 of	

gradients	in	the	curvature	of	the	ambient	space.		 	

Geometrical	frustration	is	naturally	described	within	the	framework	of	incompatible	elasticity.	In	

this	framework,	an	elastic	body	is	modeled	as	an	ND	Riemannian	manifold,	equipped	with	a	reference	

metric	𝑔	 that	 represents	 local	equilibrium	distances	between	material	elements.	A	configuration	 is	an	

embedding	of	the	body	manifold	into	an	ambient	ND	manifold.	Every	configuration	of	the	body	induces	

on	the	body	manifold	a	metric	𝑔,	which	we	call	the	actual	metric.	The	elastic	strain	is	the	deviation	of	𝑔	

from	 𝑔.	 The	 elastic	 model	 is	 fully	 determined	 by	 a	 constitutive	 relation,	 which	 relates	 the	 internal	

stresses	to	the	strain	field.	In	the	case	of	a	hyperelastic	material,	the	constitutive	relation	can	be	defined	

by	an	energy	functional,	which	is	an	additive	measure	of	a	local	energetic	cost	of	the	strain.	

Considering	 first	 the	 case	of	 a	 2D	 sheet	 embedded	 in	 a	 2D	 surface;	 the	 local	 2D	 geometry	 of	

both	the	sheet	and	embedding	surface	is	determined	by	one	scalar	field	–	the	Gaussian	curvature.	We	

denote	 the	 intrinsic	 Gaussian	 curvature	 of	 the	 sheet	 	 𝐾(𝒓)	 ,	 and	 the	 Gaussian	 curvature	 of	 the	

embedding	surface	𝐾(𝒓).		If	𝐾 = 𝐾	everywhere,	then	the	sheet	and	the	surface	are	compatible,	and	the	
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sheet	 can	 adopt	 a	 stress	 free	 configuration	 within	 the	 surface.	 Geometrical	 frustration	 occurs	 when	

𝐾 ≠ 𝐾.	 In	 such	 a	 case	 parts	 of	 the	 sheet	 must	 be	 stretched	 or	 compressed	 in	 order	 to	 fit	 into	 the	

confining	surface.	

We	consider	a	disc	of	radius	𝑅	with	a	constant	intrinsic	curvature	𝐾	embedded	in	a	plane	with	

spatially	 varying	 curvature.	 Focusing	 on	 the	 dominant	 effect,	 we	 take	 𝑅 ≪ 𝐾(𝒓)/ ∇𝐾 	 so	 that	 the	

curvature	 of	 the	 embedding	 surface	may	 be	 considered	 uniform	 across	 the	 disc,	 and	 is	 equal	 to	 the	

confining	 curvature	 at	 the	 disc’s	 center.	We	 now	 compute	 the	 total	 residual	 energy	 of	 the	 disc	 as	 a	

function	of	its	position	𝒓	for	given	values	of	𝐾, 𝐾	and	𝑅.	We	apply	here	a	variation	of	the	method	of	the	

Incompatible	Stress	Function	(ISF)	that	we	recently	introduced	[14].		

The	equilibrium	equation	for	the	stress	tensor	in	the	disc	𝜎!" 	takes	the	form	

𝛻!𝜎!" + 𝛤!"
! −  𝛤!"

! 𝜎!" = 0							(	1	)	

Here	𝛤	and	𝛤	are	the	Christoffel	symbols	associated	with	the	actual	and	reference	metrics,	respectively,	

and	𝛻	 is	the	covariant	derivative	with	respect	to	the	reference	metric	𝑔	of	the	disc.	As	an	equation	for	

the	actual	metric	𝑔,	equation	(1)	is	a	highly	nonlinear	equation.	Nonetheless,	the	solution	for	the	stress	

can	be	represented	using	a	single	scalar	function	𝜓	that	is	the	ISF 

𝜎!" = !
!"#!

!
!"#!

𝜀!"𝜀!"∇!𝛻!𝜓,					(	2	)	

where	𝜀	is	the	anti-symmetric	Levi-Civita	symbol.		We	can	formulate	simple	linear	equations	for	the	ISF	

by	adding	to	the	small	gradient	assumption	a	small	incompatibility	assumption,	namely	

𝑅 |𝐾 − 𝐾| ≪ 1.					(	3	)	

Under	this	assumption	the	representation	of	the	stress	reduces	to	a	simpler,	approximated	form	

𝜎!" = !
!"#!

𝜀!"𝜀!"𝛻!𝛻!𝜓.						(	4	)	
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At	this	stage,	we	can	express	the	actual	metric	in	terms	of	the	reference	metric	and	the	ISF	for	a	

Hookean	disc.	For	plane	stress	problems	the	equation	for	the	ISF	arises	from	the	compatibility	condition	

𝐺𝑎𝑢𝑠𝑠 𝑔 =  0,	i.e.	the	Gaussian	curvature	vanishes	everywhere.	Here	we	generalize	this	compatibility	

condition	and	require		

𝐺𝑎𝑢𝑠𝑠 𝑔 =  𝐾.						(	5	)	

A	 direct	 calculation	 of	 the	 Gaussian	 curvature	 associated	 with	 the	 actual	 metric	 obtained	 from	 this	

requirement	yields	an	equation	for	the	ISF		𝜓	

− !
!

 𝛥 𝛥𝜓 − !
!
𝐾 𝛥𝜓 + 𝐾 = 𝐾,						(	6	)	

where	𝑌	 is	the	2D	Young’s	modulus	and	𝛥	 is	the	Laplace-Beltrami	operator	associated	with		𝑔.	The	left	

hand	side	in	this	equation	describes	the	curvature	associated	with	the	energy	minimizing	configuration.	

The	right	hand	side	describes	the	curvature	associated	with	the	ambient	space.	Equation	(7)	is	similar	to	

the	bi-harmonic	equation	obtained	for	the	Airy	stress	function	in	plane-stress	problems;	it	generalizes	it	

to	arbitrary	intrinsic	and	ambient	Gaussian	curvatures.	

Equation	(8)	 is	accompanied	with	boundary	conditions	on	the	stresses.	The	normal	stresses	at	

the	boundary	should	vanish,	i.e.	𝜎!! 𝑅 =  0,	𝜎!" 𝑅 =  0,	where	𝜌, 𝜃	are	the	polar	coordinates	on	the	

disc.	In	addition,	the	stresses	at	the	origin	should	converge	to	a	finite	value.	The	solution	of	equation	(9)	

that	satisfies	these	conditions	is		

𝜓 𝜌 = !
!!

!
! 
− 1 2 atanh cos  𝐾 𝜌 + 2 ln sin  𝐾 𝜌 − cos 𝐾 𝜌 sec ! !

!

!
							(	10	)	

The	stresses	and	the	elastic	energy	stored	in	the	disc	can	be	directly	calculated	from	the	ISF.		Since	we	

are	interested	in	small	bodies,	we	can	expand	the	residual	energy	in	orders	of	𝑅	and	obtain	

𝐸 =  ! !
!"#

𝐾 − 𝐾 ! 𝑅! +  O(𝑅!).       ( 11 ) 

JIS JIS � 8/23/2016 3:06 PM
Formatted: Font:Do not check spelling or
grammar
JIS JIS � 8/23/2016 3:06 PM
Deleted: 6

JIS JIS � 8/23/2016 3:06 PM
Formatted: Font:Do not check spelling or
grammar

JIS JIS � 8/23/2016 3:06 PM
Deleted: 6

JIS JIS � 8/23/2016 3:06 PM
Formatted: Font:Do not check spelling or
grammar
JIS JIS � 8/23/2016 3:06 PM
Deleted: 6

JIS JIS � 8/23/2016 3:06 PM
Deleted: 7

JIS JIS � 8/23/2016 3:06 PM
Deleted: 8



5	
	

Equation	(12)	 indicates	that	for	a	curvature	difference	δ𝐾 𝒓 ≡ 𝐾 − 𝐾(𝒓),		the	residual	elastic	energy	

scales	 as	𝐸 𝒓 ∝ 𝑅! 𝛿𝐾 𝒓 !
;	 here,	 the	 change	 in	 energy,	 which	 generates	 the	 force,	 is	 only	 in	 the	

residual	elastic	energy	of	the	disc.	One	notes	immediately	that	if	𝛻𝐾 ≠ 0		the	gradient	of	the	energy	is	

not	zero;	in	this	case	a	force	𝐹 = −𝛻𝐸(𝒓)	acts	on	the	center	of	mass	of	the	disc.	Therefore,	geometrical	

forces	can	act	not	only	on	virtual	“geometrical	charges”,	but	also	on	extended	elastic	bodies.	A	condition	

for	such	forces	is	a	non-vanishing	gradient	in	the	Gaussian	curvature	of	the	embedding	surface.	

In	order	to	test	whether	the	embedding	of	a	frustrated	disc	results	in	forces	and	motion	of	the	

disc,	we	construct	an	experimental	system	consisting	of	an	elastic	disc	with	a	tunable	intrinsic	reference	

metric,	 and	 a	 curved	 Hele-Shaw	 cell	 formed	 from	 two	 plates	 with	 a	 radially-dependent	 Gaussian	

curvature,	as	shown	 in	profile	 in	Fig.	1	a.	 	The	discs	are	 fabricated	 from	P-NIPA	 	gels,	where	 the	NIPA	

concentration	 can	 be	 varied	 to	 enable	 the	 temperature	 responsivity	 of	 the	 material,	 as	 described	

elsewhere	 [3].	 When	 heated	 above	 𝑇!~33∘𝐶	 these	 discs	 shrink	 differentially,	 and	 can	 adopt	 a	

temperature	 dependant	 non-Euclidean	 reference	 metric.	 We	 cast	 the	 gel	 disc	 with	 a	 thickness	 of	

approximately	 0.5	 mm.	 The	 reference	 Gaussian	 curvature	 of	 the	 disc	 is	 varied	 up	 to	 𝐾 !"# ≈ 1/

4 𝑐𝑚!!.	 This	 temperature	 responsive	 Polyacrylamide-NIPA	 gel	 with	 an	 intrinsic	 metric	 takes	 on	

spontaneous	curvature	when	in	free	space;	however,	when	confined	in	the	cell	it	can	no	longer	assume	

its	intrinsic	geometry,	and	must	conform	to	the	local	shape	dictated	by	the	cell.		

The	 surfaces	 of	 the	Hele-Shaw	 cell	 are	 axisymmetric,	 and	 follow	 a	 radial	 profile	 described	 by	

𝑧 𝑟 = 5𝑒!
!!

!"   𝑐𝑚.	 As	 r	 increases,	 the	 Gaussian	 curvature	 of	 the	 Hele-Shaw	 cell 𝐾 𝑟 	 varies	 from	

positive	to	negative	values		and	finally	to	0,	as	plotted	in	the	inset	to	Fig.	1	a.	The	Hele-Shaw	cell	forms	a	

gap	 of	 0.75mm	 maintained	 by	 a	 suspension	 system	 with	 a	 compliance	 of	 ~	 0.5	 mm,	 so	 that	 at	 its	

narrowest,	 the	disc	 fits	 tightly	within	 the	 cell.	 The	 compliance	enables	harmonic	driving	of	 the	gap	at	

typical	frequencies	of	5	Hz	with	a	shaker	to	prevent	the	gel	from	sticking	to	the	surfaces;	the	assembly	is	

JIS JIS � 8/23/2016 3:06 PM
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shown	schematically	in	Fig.	1	b.	The	cell-gel	system	is	immersed	in	a	temperature-regulated	water	bath.	

The	temperature	of	the	water	can	be	slowly	changed	at	a	rate	of	~1∘𝐶/𝑚𝑖𝑛	 	to	allow	swelling	and	de-

swelling	of	the	gel	to	its	equilibrium	volume	at	any	given	temperature;	this	enables	precise	control	over	

the	gel’s	reference	curvature	𝐾(𝑇).	The	density	of	the	gel	is	typically	1200 𝑘𝑔 𝑚!;	therefore,	gel	discs	

sink	in	pure	water.	Though	density	matching	additives	can	be	added	to	counteract	the	buoyancy	force,	

as	described	elsewhere[15],	the	experiments	described	in	this	paper	were	conducted	in	pure	water.	In	

addition,	 the	 dimensions	 of	 the	 disc	 imply	 a	 Foppl-von-Karman	 number	 𝛾 > 100,	 assuring	 the	

dominance	of	stretching	effects	with	respect	to	bending	effects.	A	careful	calculation	would	show	that	

this	 small	bending	 induced	 force	acts	 in	 the	 same	direction	as	gravity,	pulling	 the	disc	away	 from	 the	

center	of	the	cell.	

We	place	the	discs	within	the	cell	where	the	Gaussian	curvature	of	the	gel	and	cell	do	not	agree.	

A	 gel	with	𝐾 > 0	 is	 shown	migrating	 from	 the	 region	with	negative	Gaussian	 curvature	 to	 the	 region	

with	positive	Gaussian	curvature,	where	 it	 remains	at	equilibrium	(Fig.	1	c).	We	observe	migration	 for	

negatively	curved	gels,	positively	curved	gels,	and	flat	gels	(Fig.	1	d);	See	Supplemental	Material	at	[URL]	

for	examples	of	gel	migration.		

We	 varied	 the	 location	 where	 we	 initially	 place	 the	 gel	 to	 probe	 how	 different	 mismatches	

between	𝐾(𝑟)	and	𝐾	affect	the	gel’s	migration.	For	example,	a	gel	with	𝐾 < 0	migrates	from	the	cell’s	

region	of	𝐾 𝑟 = 0	at	its	periphery	and	also	from	the	cell’s	positive	Gaussian	curvature	near	its	center,	

as	shown	by	the	two	traces	plotted	 in	 red	 in	Fig.	1	e;	 it	migrates	 to	precisely	 the	same	 location	when	

placed	above	that	location	and	below	it,	both	with	and	against	the	effect	of	gravity,	respectively.		
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Figure 1: Experimental Schematic and demonstration of migration of a 2D frustrated gel. a) A picture of the 

confining plates of the cell. Arrows indicate periodic forcing of the gap at 5 Hz using a shaker. The 

exaggerated gap shows how the plates form the curved Hele-Shaw cell. Scalebar: 2 cm). The cell’s Gaussian 

curvature K is plotted as a function of radius (inset). b) An oblique schematic view of the set-up: arrows 

indicate the gel, the glass surface and the steel surface. This set up is immersed in a temperature-regulated 

water bath; by controlling the temperature, we can manipulate the intrinsic curvature of the gel. c) A gel with 

positive spontaneous curvature migrates from the lower portion of the cell, where 𝑲(𝒓) < 𝟎, to the upper 

portion, where 𝑲(𝒓) > 𝟎. The gel is shown in its final, stable position, where it has ceased migration. The 

dots trace out the trajectory of the gel, where the color corresponds to time from start (blue) to finish (red). 

Scalebar: 5 cm d) Several trajectories for gels with different values of reference curvature are plotted 

against time, with background color indicating the local value𝑲(𝒓). The gels with spontaneous negative 

curvature (blue curves) both migrate to a point near the lowest value of the local curvature. Two examples of 

a gel with positive spontaneous curvature (red lines) show their propagation against gravity to regions of 
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𝑲 𝒓 > 𝟎. A flat gel (dark grey) migrates to the zero in the bell. Each gel is approximately 5 cm in diameter, 

and thus the precision with which the gels migrate is approximately 2 cm. 

The	temperature	dependence	of	𝐾	can	be	used	to	externally	control	the	motion	of	a	single	disc	

within	the	cell.	To	demonstrate	this,	we	use	a	gel	that	has	positive	Gaussian	curvature	at	high-T	and	a	

lesser	Gaussian	curvature	as	T	decreases;	this	gel	is	flat	at	room	temperature,	as	shown	schematically	in	

Fig.	2	a.	We	introduce	this	disc	near	the	edge	of	the	cell,	wait	until	it	reaches	its	equilibrium	location	in	

the	 cell,	 and	 subsequently	 cool	 the	 bath	 over	 a	 period	 of	 several	 minutes.	 Initially	 the	 temperature	

exceeds	the	critical	 temperature,	and	the	disc	migrates	from	the	boundary	of	the	cell	upward,	against	

gravity.	Eventually	it	comes	to	a	rest	near	the	center	of	the	cell,	where	𝐾(𝒓)	most	closely	matches	𝐾(𝑇),	

and	stayed	there	as	long	as	𝑇 > 𝑇! .	Upon	further	decrease	of	the	bath’s	temperature,	the	gel	migrated	

from	the	region	of	𝐾 > 0	to	a	region	of	the	cell	with 𝐾 = 0,	as	shown	in	Fig.	2	b;	this	only	occurred	after	

the	bath	has	 cooled	by	 several	degrees.	 The	gel	 remained	 in	 this	 location	 for	 the	 final	400	 sec	of	 the	

experiment.	 Frictional	 forces	 significantly	 overdamp	 the	 dynamics	 of	 the	 gel,	 as	 can	 be	 seen	 by	 the	

approach	of	the	gel	to	its	final	position	in	each	of	the	traces	of	the	gel’s	position	in	Figs.	1	(d)	and	2	(b),	

thus	preventing	quantitative	comparison	between	the	theory	and	the	experiment,	as	discussed	in	detail	

in	the	supplementary	material.	

In	 the	experiment,	 the	 forces	 that	push	 the	disc	 are	obviously	 generated	by	 the	 cell	 surfaces.	

These	 forces	 include	 friction/adhesion	 forces,	 which	 oppose	 the	 center-of-mass	 motion	 but	 do	 not	

generate	it,	and	normal	forces	exerted	perpendicularly	to	the	mold.	Since	these	forces	are	normal	to	the	

plane	of	the	disc	at	every	point,	they	do	not	change	the	in-plane	stresses	in	the	disc;	these	stresses	are	

identical	to	those	that	would	be	obtained	if	the	system	were	truly	2D.	They	generate	a	center-of-mass	

acceleration	 that	does	not	depend	on	 the	 thickness	of	 the	gel	 in	 the	 thin	 limit	 (both	stretching	 forces	

and	inertia	are	linear	in	the	thickness),	and	is	nonzero	within	our	approximation	if	and	only	if	𝛻𝐾 ≠ 0.	It	

is	 therefore	 evident	 that	 these	 net	 center-of-mass	 forces	 arise	 from	 a	 truly	 2D	 effect	 that	 exists	
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regardless	 of	 an	 embedding	 in	 a	 3D	 space,	 even	 though	 in	 an	 embedded	 system	 it	 is	manifested	 via	

normal	forces.		

	

	

Figure 2. Frustration driven migration of a gel with temperature-dependent intrinsic curvature. a) The NIPA 

gel is cast such that it will change the value of its spontaneous curvature in response to changes in the 

temperature of the bath: here, the gel changes its spontaneous curvature from positive at high-temperatures 

to approximately flat at lower temperatures. b) The gel is embedded in the cell at r = 5 cm, where the local 

curvature is negative, while the water bath is at 𝟒𝟓∘𝐂. The gel migrates upward, as shown in the red curves 

of Figure 1 d. At t=150 s, we begin the cooling cycle, and the water bath temperature drops to approximately 

𝟑𝟓∘𝐂 over 2 minutes, and the gel’s spontaneous curvature is now near zero; as the bath cools, the gel 

simultaneously migrates down the bell to more closely match this curvature, where it remains for the 

remainder of the experiment.  

The	 forces	 we	 discuss	 here	 arise	 from	 a	 geometric	 incompatibility	 between	 the	 intrinsic	

geometry	 of	 an	 elastic	 body	 and	 the	 inhomogeneous	 geometry	 of	 its	 embedding	 space.	 Though	 the	

analytical	solution	and	experimental	demonstration	consider	a	2D	body	in	a	2D	space,	all	the	arguments	

we	presented	also	hold	 for	higher	 spatial	dimensions.	Therefore,	under	certain	conditions,	we	predict	

net	 forces	 acting	 on	 elastic	 bodies	 in	 the	 3D	 space	 around	 us.	 What	 are	 these	 conditions?	 When	

considering	a	Euclidean	space,	 it	was	already	argued	[16,	17]	that	residually	stressed	3D	elastic	bodies	
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are	 those	whose	 3D	 reference	metric	 is	 non-Euclidean.	 In	 such	 a	 space	 no	net	 forces/torques	will	 be	

exerted,	 thanks	 to	 the	 translational	 and	 rotational	 space	 symmetries	 (𝛻𝐾 = 0	 in	 our	 2D	 analog).	

However,	according	to	general	relativity	our	space	is	neither	truly	Euclidean	nor	homogeneous,	in	which	

case	elasticity	should	be	formulated	in	a	way	that	takes	into	account	the	non-trivial	geometry	of	space	

[18].	In	such	a	scenario,	certain	elastic	bodies	“better	fit”	certain	curved	regions	in	space,	and	we	predict	

net	forces	pushing	them	towards	those	regions.	

The	magnitude	of	the	residual	elastic	energy	for	an	N-dimensional	(ND)	body	in	an	ND	space	can	

be	estimated	from	scaling	arguments	to	be	of	the	form	

𝐸 ∝  𝑌𝑉 𝐾 − 𝐾 ! 𝑅! +  𝑂(𝑉𝑅!)       ( 13 )	

where	𝑌	 is	an	ND	elastic	modulus,	𝑉	 is	 the	volume	of	 the	ND	body	 (𝑉 ∝ 𝑅!),	and	𝐾,𝐾	 represent	 the	

Riemann	curvature	tensors	of	the	ambient	space	and	the	reference	metric,	respectively.	For	𝑁 = 2	we	

get	𝐸 ∝  𝑌 𝐾 − 𝐾 ! 𝑅! +  𝑂(𝑅!),	as	we	obtained	from	the	direct	analytical	calculation	above.	However,	

unlike	 two	 dimensions,	 where	 the	 curvature	 tensors	 can	 be	written	 in	 terms	 of	 one	 scalar	 field	 (the	

Gaussian	 curvature),	 for	𝑁 > 2	 the	 tensors	 𝐾,𝐾	 have	 more	 than	 one	 independent	 local	 degree	 of	

freedom	and	may	be	locally	anisotropic.	The	residual	energy	may	therefore	depend	on	orientation	and	

thus	 exert	 geometrical	 torques	 on	 the	 body,	 and	 not	 just	 net	 force,	 even	 in	 the	 point-curvature	

approximation.	For	extended	bodies,	higher	order	terms	may	induce	torque	already	in	two	dimensions,	

provided	that	both	the	intrinsic	and	ambient	geometry	are	anisotropic.	At	𝑁 = 1,	no	effect	is	expected.	

As	an	example,	we	shall	 look	at	a	3D	Euclidean	elastic	 sphere	put	 in	a	Schwarzschild	background.	The	

space	components	of	a	Schwarzschild	metric	are	given	in	spherical	coordinates	 𝑟, 𝜃,𝜑 	by	

𝑔!"!
!"#$%#& =

1 − !!
!

!!
0 0

0 𝑟! 0
0 0 𝑟! sin! 𝜃

	      ( 14 )	
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where	 𝑅!	 is	 the	 Schwarzschild	 radius.	 This	 leads	 to	 a	 non-trivial	 space	 curvature	 tensor	 with	 radial	

component	− !!
!!
	 and	 angular	 components	 !!

!!!
.	 A	 Euclidean	 elastic	 sphere	 of	 radius	𝑅	 embedded	 in	 a	

Schwarzschild	background	will	 therefore	possess	residual	elastic	energy	of	order	𝐸 ∝  !"!!
! !!

!!
,	creating	

an	 effective	 repulsive	 force	 between	 the	 sphere	 and	 the	massive	 center	 of	 the	 Schwarzschild	metric	

𝐹!" ≈  !"!!
! !!

!!
.	 This	 effect	 is	 very	 small	 compared	 to	 the	 force	 exerted	 on	 such	 a	 body	 by	 the	

gravitational	field	in	the	Newtonian	approximation.	This	may	be	estimated	as	𝐹! =
!"!!!!

!!!
	(with	𝜌, 𝑐	the	

mass	density	and	speed	of	light	respectively),	and	therefore	the	ratio	between	the	two	forces	is	

!!"
!!
≈ !!

!

! !
!

! !!
!

      ( 15 )	

where	𝑐!	is	the	speed	of	sound	in	the	material.	This	expression	shows	that	for	any	realistic	scenario,	the	

geometrical	forces	are	completely	negligible	compared	to	gravitation.	

In	this	work	we	showed	that	an	elastic	body	can	exert	force	and	torque	on	itself	by	manipulating	

intrinsic	degrees	of	 freedom,	much	 like	 in	 the	tales	of	Baron	Munchausen.	This	unique	 feature	results	

from	 the	 explicit	 coupling	 between	 the	 reference	 geometry	 of	 the	 body	 and	 the	 geometry	 of	 space	

(which	can	be	inhomogeneous)	via	incompatible	elasticity.	Though	reminiscent	of	the	motion	of	proteins	

on	a	curved	membrane	[19]	or	migration	of	insects	near	a	meniscus	[20]	,	this	principle	depends	only	on	

the	intrinsic	geometries	of	the	body	and	the	confining	space.	It	is	not	yet	clear	whether	examples	of	the	

Munchausen	effect	exist	outside	the	laboratory.	We	have	shown	that	in	the	context	of	gravitation	this	

effect	 is	 negligible.	 However,	 nature	might	 exploit	 such	 a	mechanism	 in	 biological	 contexts,	 allowing	

membrane-like	 organisms	 to	 migrate	 on	 curved	 surfaces	 solely	 by	 altering	 their	 intrinsic	 geometry,	

without	exerting	tangential	forces.	
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