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We experimentally demonstrate PT-symmetric optical lattices with periodical gain and loss profiles 
in a coherently-prepared four-level N-type atomic system. By appropriately tuning the pertinent atomic 
parameters, the onset of PT-symmetry breaking is observed through measuring an abrupt phase-shift 
jump between adjacent gain and loss waveguides. The experimental realization of such readily 
reconfigurable and effectively controllable PT-symmetric waveguide array structure sets a new stage for 
further exploiting and better understanding the peculiar physical properties of these non-Hermitian 
systems in atomic settings. 

PACS number(s): 42.50.Gy, 11.30.Er, 78.20.Ci 

The discovery of parity-time (PT) symmetric Hamiltonians has allowed the physics community to see the 
behaviors of non-Hermitian systems in a new light [1]. It was found that a broad class of complex Hamiltonians 
can exhibit altogether real eigenvalue spectra provided they respect the parity-time symmetry [1-3]. Another 
intriguing consequence of such PT-symmetry condition is the possibility for an abrupt symmetry breaking phase 
transition, beyond which the spectrum ceases to be real and starts to become complex, once a parameter 
controlling the degree of non-Hermiticity exceeds a certain critical threshold [4-6]. The experimental studies 
came about only recently after recognizing that optics can provide a fertile ground where PT-symmetric concepts 
can be implemented [4-8]. What facilitates this possibility is the formal equivalence between the quantum 
Schrödinger equation and the optical wave propagation equation (under paraxial approximation), where the 
gain-loss parameters are responsible for introducing the non-Hermiticity into the systems. Based on this 
isomorphism, one can easily show that a necessary (yet not sufficient) condition for PT symmetry is that the real 
part of the complex potential must be an even function of the position while its imaginary counterpart (in optics 
corresponding to the gain/absorption) must have a spatially antisymmetric profile [3, 5]. In recent years, 
significant progresses have been made on both theoretical and experimental fronts concerning a variety of optical 
PT-symmetric systems that simultaneously engage gain and loss processes in a balanced fashion [7-24]. These 
studies have unveiled a number of interesting phenomena such as non-Hermitian Bloch oscillations [7, 8], 
unidirectional invisibility [14-17], perfect laser absorbers [20, 21], optical solitons [22], and non-Hermitian 
manifestations of topological insulators [23] in PT-symmetric optical configurations. More recently, an 
“exceptional ring” effect was reported in a Dirac cone setting analogous to the gain-loss structure in 
PT-symmetric optics [24]. 

Since the refractive index, particularly the gain/loss properties, can be simultaneously manipulated in 
multi-level atomic systems [25, 26], realizations of PT-symmetric potentials (with n(x)=n∗(−x)) have been 
theoretically proposed in certain multi-level atomic configurations [27-30]. Quite recently, an anti-PT-symmetric 
potential (with n(x)=−n∗(−x)) has been experimentally produced in a pair of optically-induced waveguides 
coupled by flying atoms [31]. Compared with solid-state systems, PT symmetry in atomic media can possess 
certain distinguished features due to their intrinsic attributes such as the light-induced atomic coherence, which 
can result in easily controllable absorption, dispersion, Raman gain, and nonlinearity. First, we are able to 
construct gain/loss-modulated optical lattices in an N-type atomic system and demonstrate the true PT symmetry 
and its breaking in a simultaneous gain/loss optical waveguide array, which was extensively studied theoretically 
[32, 33] but has not yet been experimentally achieved. Second, with multiple tunable parameters, the atomic 
system allows real-time reconfigurable capability and easy tunability (especially for the periodicity and structure 
of the lattice) without employing sophisticated fabrication technologies and making large number of samples, 
which provide a new platform to study PT symmetry under different parametric regimes and other non-Hermitian 
Hamiltonians. Third, many interesting effects, such as nonlinear PT-symmetric defect modes [34], solitons in 
PT-symmetric nonlinear lattices [35] and unidirectional light transport [36], have been predicted recently by 
considering the interplays between PT-symmetric potential and Kerr nonlinearity. Such phenomena might be 
relatively easy to be observed in electromagnetically induced transparency [37] (EIT) atomic systems with 
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enhanced/controllable nonlinearity [38], which opens the door for future experimental studies of non-Hermitian 
nonlinear optics. 

Inspired by recent developments in PT-symmetric optics and the superiorities of atomic media, here, we 
experimentally demonstrate light wave transport in a periodic PT-symmetric potential in a four-level atomic 
configuration driven by a weak signal field and two sets of standing-wave (coupling and pump) laser fields [40]. 
The PT-symmetric potential is achieved by spatially engineering the desired complex refractive indices of the 
atomic assemble. The standing-wave coupling field propagating along the z direction is responsible for 
establishing the optically induced lattice along the transverse direction x. By launching the weak signal field into 
the lattice, we can obtain discrete diffraction patterns [41], as well as the underlying spatially modulated 
susceptibility, under the EIT condition. Our results clearly indicate that, by adding another standing-wave pump 
field, spatially periodic gain and loss regions with high contrast can be generated on the launched signal field. 
The induced spatially periodic PT-symmetric optical potential (with a periodic even refractive index and odd 
gain/loss profiles) can be produced by properly tuning the pertinent experimental parameters. The manifestation 
of the spontaneous PT-symmetry breaking phenomenon is directly observed by monitoring the relative phase 
difference between the adjacent gain and loss channels. This is accomplished by interfering the signal beam 
passing through the atomic medium with a reference beam in the y direction. The experimental observations can 
be well explained through numerical simulations. 

Figure 1(a) schematically depicts the experimental setup. The signal field and two sets of standing-wave 
fields propagating along the same z direction interact with an N-type four-level 85Rb atomic system (see Fig. 
1(b)), which consists of two hyperfine states F=2 (level |1〉) and F=3 (|2〉) of the ground state 5S1/2, and two 
excited states 5P1/2 (|3〉) and 5P3/2 (|4〉). Two elliptical-Gaussian-shaped coupling beams Ec and Ec′ (of wavelength 
λc=794.97 nm, frequency ωc, Rabi frequencies Ωc and Ωc′, respectively) from the same external cavity diode laser 
(ECDL) are symmetrically placed with respect to z axis and intersect at the center of the rubidium cell at an angle 
of 2θ≈0.4° to establish an optical lattice along the transverse direction x inside the cell. Similarly, two pump 
beams Ep and Ep′ (λp=780.24 nm, ωp, Ωp and Ωp′), partially overlapped with Ec and Ec′, respectively, enter the 
cell at the almost same angle 2θ to form a pump-field optical lattice. The 7 cm long atomic vapor cell wrapped 
with μ-metal sheets is heated by a heat tape to provide an atomic density of ∼2.0×1012 cm-3 at 75°C. The signal 
beam Es (λs=794.97 nm, ωs, Ωs) with a Gaussian intensity profile propagates through the two sets of optical 
lattices, as shown in Fig. 1(c). 

By properly adjusting the experimental parameters, active Raman gain, one of the most important 
requirements for implementing the exact PT symmetry in optics, can be generated on the signal field. [26, 40] As 
a result, desired periodic gain and loss profiles along the x direction are obtained after Es passing through these 
two partially-overlapping optical lattices. The periodically gain/loss-modulated Es then interferes with a reference 
beam (injected in the y direction) to exhibit the induced phase difference between the adjacent gain and loss 
channels. The reference beam originates from the same ECDL as Es and is introduced into the optical path via a 
50/50 beam splitter to intersect with Es at the position of a charge coupled device (CCD) camera (see Fig. 1(a)), 
which is used to monitor both the output signal beam and the relative phase difference. Figure 1(c) shows a 
schematic diagram of the spatial arrangement for the two sets of optical lattices and Es inside the cell. The spatial 
periodicity of the coupling lattices is dc=λc/2sinθ≈114 μm, and the spatial-shift distance Δd between the two 
lattices can be adjusted to control the real and imaginary parts of the susceptibility experienced by Es. 

Figures 2(a) and 2(b) show the calculated real and imaginary parts of the susceptibility versus the 
signal-field frequency detuning for different pump-beam intensities. The frequency detunings for the signal, 
coupling, and pump fields are defined as Δs=ω31−ωs, Δc=ω32−ωc, and Δp=ω41−ωp, respectively. To achieve the 
PT-symmetric conditions in the current atomic lattices, the values of the real part versus Δs at Ωp=0 and Ωp≠0 
must be the same, while the corresponding imaginary parts must have the same absolute value but opposite sign. 
The theoretically calculated spatial distributions of the refractive index in Figs. 2(c) and 2(d) clearly indicate that 
a PT-symmetric structure with alternating gain and loss waveguides [40] can indeed be established in such an 
atomic configuration. The periodic structure can be interpreted through a complex potential V(x) in the paraxial 
wave equation [5], which is mathematically isomorphic to the Schrödinger equation: 
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where Ej(x) represents the eigenmode field profile in each waveguide element and Aj(z) denotes the 
corresponding modal amplitude in this channel. Based on Eqs. (1) and (2), one can then write down a 
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coupled-mode (tight-binding) set of equations from which the complex band structure can be predicted. For a 
10-waveguide coupled system (which can be readily implemented in our experiment), an exceptional point 
(where the PT symmetry breaks) exists at γ/2κ = 0.284, where γ=γG=γL is the gain or loss coefficient and κ is the 
coupling coefficient between the adjacent waveguides. In principle, infinite number of coupled waveguides can 
be considered. However, due to the limited beam sizes and the periodicity of the waveguides, and considering the 
alternate gain-loss requirement for the PT symmetry, we use 10 effective waveguides in the theoretical model to 
mimic the experiment. Numerical simulations indicate that the breaking threshold decreases as the number of 
waveguides increases (See details in the Supplementary Material [42]). 

In the experiment, we first set a periodic refractive index modulation based on the EIT scheme (generated 
by the signal and coupling fields) [44] and then establish the periodic gain-loss profiles (by adding the 
standing-wave pump field), both along the x direction. With the signal beam (as shown in Fig. 3(a)) first 
launched into the coupling lattice (with the pump fields blocked), we observe the discrete diffraction pattern that 
manifests the periodic modification of the signal-field refractive index. Such discrete diffraction patterns appear 
within a frequency detuning window of about 50 MHz near the two-photon resonance satisfying Δs−Δc=0 [41]. 
With the signal-field detuning set as Δs=−100 MHz, the diffraction image shown in Fig. 3(b) is obtained by 
carefully adjusting dc to match the maximum refractive index contrast at Δs−Δc=10 MHz. 

The presence of the pump-field lattice can provide an amplification for Es. With the two sets of lattices 
turned on concurrently, we can simultaneously induce gain and loss regions with a high and controllable contrast 
on Es by carefully modifying the displacement Δd between the two established optical lattices (see Fig. 1(c)) and 
other experimental controlling parameters. As shown in Fig. 3(c), two adjacent channels in the lattice array 
experience alternative gain and loss, which can be determined by comparing the intensity profile of signal beam 
before its interaction with the medium (Fig. 3(a)). Figure 3(d) demonstrates the evolution of the gain/loss ratio as 
a function of Δp – showing a sensitive dependence. Figures 3(d1) and 3(d2) present the observed gain and loss 
intensity profiles at Δp=30 MHz and 10 MHz, respectively. The gain/loss ratio in Fig. 3(c) reaches near unity, i.e. 
a balanced gain and loss between neighboring waveguides, which is required for achieving an exact PT 
symmetry in such coupled waveguide array system [5]. 

In a PT-symmetric system, the evolutions of eigenvalues can be the most reliable criterion to determine 
whether the system is below or above the threshold. For such a non-Hermitian gain/loss-modulated array, the 
behaviors of its eigenvectors can be captured by the changes in the relative phase difference ν (which represents 
the internal phase difference of the eigenvectors) between the adjacent gain and loss channels. [12] The distance 
(along the y direction) between the adjacent interference fringes (as shown in Fig. 4(a)) is defined as 2π. The 
black dotted line gives the center of the two solid lines, so the distance between the solid line and the dotted line 
is π. With the intensity of ES spatially modulated, the interference pattern divides the “bright” gain regions and 
“dark” loss regions into a net-like square lattice. A red dotted line is drawn along the center of a “dark” square in 
one row of the lattice to mark its position. The relative distance (referred to as the relative phase difference, 
marked by a pair of one-way arrows in Figs. 4(c)-4(e)) between the red dotted line and black dotted line 
represents the relative phase difference between two neighboring gain and loss channels. [12] 

Figure 4(b) shows the case that no phase difference is detected between the gain and loss channels when the 
gain is zero i.e. the black dotted line and red dotted line overlap. Several relative phase differences (ν) are 
measured in Figs. 4(c)-4(e) as the gain/loss ratio γG/γL increases but still below the PT-symmetry breaking 
threshold. Figure 4(f) illustrates the situation above the breaking point, in which case the phase difference is 
fixed at ν=π/2 even when the gain/loss ratio becomes slightly above unity (the measured ν keeps unchanged as 
γG/γL continuously increases from 1 to 1.2). The measured phase-difference dependence on γG/γL, as shown in Fig. 
4(g), can be qualitatively explained by the theoretical predictions given in Fig. 4(h), illustrating that the value of 
γL/2κ can indeed determine the relative phase difference produced in a coupled waveguide array system with a 
certain γG/γL. The vertical axis γL/2κ represents the evolution of nI/nR since the coupling coefficient κ directly 
relates to nR. Since ν is consistently zero under low and no gain conditions, there are no error bars for the first 
two data points. 

For the point at γG=γL, the phase difference can vary from 0 to π below PT-symmetry breaking threshold and 
jumps to a fixed value of π/2 above threshold by increasing γL/2κ. [12] Actually, Fig. 4(f) shows the exact 
PT-symmetry breaking point with γG/γL=1 and γL/2κ > 0.284 simultaneously realized. For the cases of γG≠γL, the 
coupled gain and loss waveguides can still have phase differences in the same way as the case of γG=γL. It is 
worth mentioning that the PT-symmetry breaking threshold value for γL/2κ can change with the value of gain/loss 
ratio as indicated by the dotted curve shown in Fig. 4(h). Giving the experimental parameters at certain gain-loss 
ratio in Fig. 4(g), we can calculate the γL/2κ value and determine whether the system operates below or above the 
PT-symmetry breaking threshold according to the coupling equations (Eq. (S4) in the Supplementary Material). 
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In principle, even if a coupled-waveguide lattice system has an unbalanced gain/loss ratio (i.e. γG/γL≠1), one can 
still mathematically transform the system into a PT-symmetry-like configuration [12]. This then establishes a 
“quasi-PT symmetry” system [45], in which the characteristic eigenvalue pattern is simply offset with respect to 
the original zero line [46]. Note that the dynamical behaviors of the exact PT-symmetry system and its 
quasi-PT-symmetry counterparts are essentially identical if the PT symmetry is unbroken, while their dynamics 
are different when the PT symmetry is broken. [45] 

In summary, we have experimentally demonstrated PT-symmetric optical lattices with controllable gain/loss 
ratio in a coherently-prepared N-type atomic ensemble. The required index modulation and the antisymmetric 
gain/loss profiles are introduced by exploiting the modified absorption (or EIT) and induced active Raman gain 
in the four-level atomic configuration. The presence of a well-defined breaking-phase threshold was 
experimentally verified by observing the abrupt change of relative phase difference between the gain and loss 
channels. The constructed PT-symmetric atomic lattices can be used to study a variety of effects related to PT 
symmetry and other non-Hermitian Hamiltonians, including anti-PT-symmetric lattice and PT-symmetric Talbot 
effect [47] as well as intriguing beam dynamical features [5] such as double refraction, power oscillation, and 
nonreciprocal diffraction patterns. 
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FIG. 1 (a) Experimental setup. Ep′ and Ep are pump beams from the same laser, so are the coupling beams Ec′ and Ec. The 
reference beam intersects with ES to generate the reference interference. (b) The energy-level diagram of the four-level 
N-type configuration in 85Rb atomic vapor. (c) The spatial arrangements of the signal field, coupling-field lattice, and 
pump-field lattice. x and z represent the transverse and longitudinal directions of beam propagation, respectively. Δd marks 
the displacement between the two lattices. 
 

FIG. 2 The real (dispersion) and imaginary (gain or absorption) parts of the susceptibility versus Δs at (a) Ωp=0 and (b) Ωp≠0, 
respectively. (c) The real and (d) imaginary parts for periodic lattices of the refractive index as a function of position x with 
the coupling intensities spatially modified. Ωs=2π×10 MHz, Ωc=2π×0.2[1+cos(πx/2)] MHz, Ωp/2π=6 MHz, Δp=40 MHz, 
Δc=−100 MHz, and Δs≈−2π×15 MHz. 

FIG. 3 (a) Image and intensity profile of Es without interacting with atoms. (b) Signal beam after propagating through the 
coupling lattice. (c) Simultaneous gain and loss profiles on Es with both lattices turned on. (d) Dependence of the gain/loss 
ratio on Δp. The squares are experimental observations and the solid curve is the theoretical prediction. The observed 
gain-loss profiles are presented at (d1) Δp=30 MHz and (d2) 10 MHz. 

FIG. 4 Selected gain and loss channels for measurements are marked with G and L, respectively. (a) Reference interference 
fringes generated by the reference beam and the signal beam without diffraction. The two solid lines mark the centers of two 
adjacent fringes. (b)−(f) Observed phase differences (marked by the pair of one-way arrows) between the adjacent gain and 
loss channels with γG/γL being 0, 0.4, 0.6, 0.8, and 1.0, respectively. (g) Measured dependence of phase difference on γG/γL. 
The left (gray) and right (green) parts are the regions of below and above the PT-symmetry breaking threshold, respectively. 
(h) Theoretical simulations of phase difference according to the coupled equations for 10 waveguides at a propagation 
distance of z=10, and the breaking threshold (the dotted curve) decreases with an increasing gain/loss ratio. The 
dimensionless z is scaled by the Rayleigh range kx0

2 (k=2π/λ, and x0 is the waveguide width). 
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