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Two of the key properties of quantum physics are the no-signaling principle and the Grover search
lower bound. That is, despite admitting stronger-than-classical correlations, quantum mechanics
does not imply superluminal signaling, and despite a form of exponential parallelism, quantum
mechanics does not imply polynomial-time brute force solution of NP-complete problems. Here,
we investigate the degree to which these two properties are connected. We examine four classes of
deviations from quantum mechanics, for which we draw inspiration from the literature on the black
hole information paradox. We show that in these models, the physical resources required to send a
superluminal signal scale polynomially with the resources needed to speed up Grover’s algorithm.
Hence the no-signaling principle is equivalent to the inability to solve NP-hard problems efficiently
by brute force within the classes of theories analyzed.

PACS numbers: 03.67.-a, 03.65.-w, 04.70.Dy

INTRODUCTION

Recently the firewalls paradox [1, 2] has shown
that our understanding of quantum mechanics and
general relativity appear to be inconsistent at the
event horizon of a black hole. Many of the lead-
ing proposals to resolve the paradox involve modi-
fying quantum mechanics. For example, the final-
state projection model of Horowitz and Maldecena
[3] and the state dependence model of Papadodimas
and Raju [4] are modifications to quantum theory
which might resolve the inconsistency.
One reason to be skeptical of such modifications of

quantum mechanics is that they can often give rise to
superluminal signals, and hence introduce acausality
into the model. For example, Weinberg nonlineari-
ties allow for superluminal signaling [5, 6]. This is
generally seen as unphysical. In contrast, in stan-
dard quantum theory, entanglement does not give
rise to superluminal signaling.
Another startling feature of such models is that

they might allow one to construct computers far
more powerful even than conventional quantum
computers. In particular, they may allow one to
solve NP-hard problems in polynomial time. NP-

hard problems refer to those problems for which
the solution can be verified in polynomial time,
but for which there are exponentially many possi-
ble solutions. It is impossible for standard quantum
computers to solve NP-hard problems efficiently by
searching over all possible solutions. This is a con-
sequence of the query complexity lower bound of
Bennett, Bernstein, Brassard and Vazirani [7], which
shows one cannot search an unstructured list of 2n

items in fewer than 2n/2 queries with a quantum
computer. (Here a query is an application of a func-
tion f whose output indicates if you have found a
solution. The query complexity of search is the min-
imum number of queries to f , possibly in superpo-
sition, required to find a solution.) This bound is
achieved by Grover’s search algorithm [8]. In con-
trast, many modifications of quantum theory allow
quantum computers to search an exponentially large
solution space in polynomial time. For example,
quantum computers equipped with postselection [9],
Deutschian closed timelike curves [10–12], or nonlin-
earities [13–17] all admit poly-time solution of NP-
hard problems by brute force search.

In this paper we explore the degree to which su-
perluminal signaling and speedups over Grover’s al-



gorithm are connected. We consider several modifi-
cations of quantum mechanics which are inspired by
resolutions of the firewalls paradox. For each modi-
fication, we show that the theory admits superlumi-
nal signaling if and only if it admits a query com-
plexity speedup over Grover search. Furthermore,
we establish a quantative relationship between su-
perluminal signaling and speedups over Grover’s al-
gorithm. More precisely, we show that if one can
transmit one classical bit of information superlumi-
nally using n qubits and m operations, then one can
speed up Grover search on a system of poly(n,m)
qubits with poly(n,m) operations, and vice versa. In
other words, the ability to send a superluminal sig-
nal with a reasonable amount of physical resources
is equivalent to the ability to violate the Grover
lower bound with a reasonable amount of physical
resources. Therefore the no-signaling principle is
equivalent to the inability to solve NP-hard prob-
lems efficiently by brute force within the classes of
theories analyzed.
Note that in the presence of nonlinear dynam-

ics, density matrices are no longer equivalent to en-
sembles of pure states. Here, we consider measure-
ments to produce probabilistic ensembles of post-
measurement pure states and compute the dynam-
ics of each of these pure states separately. Alter-
native formulations, in particular Everettian treat-
ment of measurements as entangling unitaries, lead
in some cases to different conclusions about super-
luminal signaling. See e.g. [18].

RESULTS

We consider four modifications of quantum me-
chanics, which are inspired by resolutions of the fire-
walls paradox. The first two are “continuous” mod-
ifications in the sense that they have a tunable pa-
rameter δ which quantifies the deviation from quan-
tum mechanics. The second two are “discrete” mod-
ifications in which standard quantum mechanics is
supplemented by one additional operation.

Final state projection

The first “continuous” modification of quantum
theory we consider is the final state projection model
of Horowitz and Maldecena [3], in which the black
hole singularity projects the wavefunction onto a
specific quantum state. This can be thought of as

a projective measurement with postselection, which
induces a linear (but not necessarily unitary) map
on the projective Hilbert space. (In some cases it
is possible for the Horowitz-Maldecena final state
projection model to induce a perfectly unitary pro-
cess S for the black hole, but in general interactions
between the collapsing body and infalling Hawk-
ing radiation inside the event horizon induce devi-
ations from unitarity [19].) Such linear but non-
unitary maps allow both superluminal signaling and
speedups over Grover search. Any non-unitary map
M of condition number 1+δ allows for superluminal
signaling with channel capacity O(δ2) with a single
application of M . The protocol for signaling is sim-
ple - suppose Alice has the ability to apply M , and
suppose Alice and Bob share the entangled state

1√
2
(|φ0〉|0〉+ |φ1〉|1〉) . (1)

where |φ0〉 and |φ1〉 are the minimum/maximum sin-
gular vectors of M , respectively. If Alice chooses to
apply M or not, then Bob will see a change in his
half of the state, which which allows signaling with
channel capacity ∼ δ2. Furthermore, it is also pos-
sible for Bob to signal superluminally to Alice with
the same state - if Bob chooses to measure or not
to measure his half of the state, it will also affect
the state of Alice’s system after Alice applies M . So
this signaling is bidirectional, even if only one party
has access to the non-unitary map. In the context of
this black hole information paradox, this implies the
acausality in the final state projection model could
be present even far away from the black hole. Also,
assuming one can apply the same M multiple times,
one can perform single-query Grover search using
∼ 1/δ applications ofM using the methods of [9, 13].
More detailed proofs of these results are provided in
Section A of the supplementary material [20].

We next examine the way in which these results
are connected. First, assuming one can speed up
Grover search, by a generalization of the hybrid ar-
gument of [7], there is a lower bound on the deviation
from unitarity required to achieve the speedup. By
our previous results this implies a lower bound on
the superluminal signaling capacity of the map M .
More specifically, suppose that one can search an un-
structured list ofN items using q queries, with possi-
bly non-unitary operations applied between queries.
Then, the same non-unitary dynamics must be capa-
ble of transmitting superluminal signals with chan-
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nel capacity C using shared entangled states, where

C = Ω

(

(

η

2q2
− 2

N

)2
)

(2)

Here η is a constant which is roughly ∼ 0.42. In
particular, solving NP-hard problems in polynomial
time by unstructured search would imply superlu-
minal signaling with inverse polynomial channel ca-
pacity. This can be regarded as evidence against the
possibility of using black hole dynamics to efficiently
solve NP-hard problems of reasonable size. A proof
of this fact is provided in Section A of the supple-
mentary material [20].

In the other direction, assuming one can send a su-
perluminal signal with channel capacity C, there is
a lower bound on the deviation from unitarity which
was applied. The proof is provided in Section A of
the supplementary material [20]. Again by our pre-
vious result, this implies one could solve the Grover
search problem on a database of size N using a single
query and

O

(

log(N)

log(1 + C2)

)

(3)

applications of the nonlinear map. Combining these
results, this implies that if one can send a super-
luminal signal with n applications of M , then one
can beat Grover’s algorithm with O(n) applications
of M as well, and vice versa. This shows that in
these models, the resources required to observe an
exponential speedup over Grover search is polyno-
mially related to the resources needed to send a su-
perluminal signal. Hence an operational version of
the no-signaling principle (such as “one cannot ob-
serve superluminal signaling in reasonable-sized ex-
periments”) is equivalent to an operational version
of the Grover lower bound (“one cannot observe vio-
lations of the Grover lower bound in reasonable-sized
experiments”).

Modification of the Born Rule

The next continuous modification of quantum me-
chanics we consider is modification of the Born
rule. Suppose that quantum states evolve by unitary
transformations, but upon measurement one sees
outcome x with probability proportional to some
function f(αx) of the amplitude αx on x. That is,

one sees x with probability

f(αx)
∑

y f(αy)
(4)

Note we have added a normalization factor to en-
sure this induces a valid probability distribution
on outcomes. This is loosely inspired by Marolf
and Polchinski’s work [21] which suggests that the
“state-dependence” resolution of the firewalls para-
dox [4] gives rise to violations of the Born rule. First,
assuming some reasonable conditions on f (namely,
that f is differentiable, f ′ changes signs a finite num-
ber of times in [0, 1], and the measurement statis-
tics of f do not depend on the normalization of the
state), we must have f(αx) = |αx|p for some p. The
proof is provided in Section B of the supplementary
material [20].
Next we study the impact of such modified Born

rules with p = 2+ δ for small δ. Aaronson [9] previ-
ously showed that such models allow for single-query
Grover search in polynomial time while incurring a
multiplicative overhead 1/|δ|, and also allow for su-
perluminal signaling using shared entangled states
of ∼ 1/|δ| qubits. (His result further generalizes to
the harder problem of counting the number of solu-
tions to an NP-hard problem, which is a #P-hard
problem). We find that these relationships hold in
the opposite directions as well. Specifically, we show
if one can send a superluminal signal with an entan-
gled state on m qubits with probability ǫ, then we
must have δ = Ω(ǫ/m). By the results of Aaronson
[9] this implies one can search a list of N items using
O(mǫ logN) time. Hence having the ability to send a
superluminal signal using m qubits implies the abil-
ity to perform an exponential speedup of Grover’s
algorithm with multiplicative overhead m.
In the other direction, if one can achieve even a

constant-factor speedup over Grover’s algorithm us-
ing a system of m qubits, we show |δ| is at least 1/m
as well. More precisely, by a generalization of the
hybrid argument of [7], if there is an algorithm to
search an unordered list of N items with Q queries
using m qubits, then

1

6
≤ 2Q√

N
+ |δ| log(M) +O(δ2). (5)

So if Q <
√
N/24, then we must have |δ| ≥ 1

12m .
The proofs of these facts are provided in Section B
of the supplementary material [20].
Combining these results shows that the number of

qubits required to observe superluminal signaling or
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even a modest speedup over Grover’s algorithm are
polynomially related. Hence one can derive an op-
erational version of the no-signaling principle from
the Grover lower bound and vice versa. This quan-
titative result is in some sense stronger than the re-
sult we achieve for the final-state projection model,
because here we require only a mild speedup over
Grover search to derive superluminal signaling.

Cloning, Postselection, and Generic

Nonlinearities

We next consider two “discrete” modifications of
quantum mechanics in which standard quantum me-
chanics is supplemented by one additional operation.
We show that both modifications admit both super-
luminal signaling with O(1) qubits and exponential
speedups over Grover search.

First, we consider a model in which one can clone
single qubits. This model can be easily seen to ad-
mit superluminal signaling using entangled states,
as pointed out by Aaronson, Bouland, Fitzsimons
and Lee [22]. Indeed, suppose two parties Alice and
Bob share the state 1√

2
(|00〉 + |11〉). If Alice mea-

sures her half of the state, and Bob clones his state k
times and measures each copy in the computational
basis, then Bob will either see either 0k or 1k as his
output. On the other hand, if Alice does not mea-
sure her half of the state, and Bob does the same
experiment, his outcomes will be a random string in
{0, 1}k. Bob can distinguish these two cases with an
error probability which scales inverse exponentially
with k, and thus receive a signal faster than light.
In addition to admitting superluminal signaling with
entangled states, this model also allows the solution
of NP-hard problems (and even #P-hard problems)
using a single query to the oracle. This follows by
considering the following gadget: given a state ρ on
a single qubit, suppose one makes two copies of ρ,
performs a Controlled-NOT gate between the copies,
and discards one of the copies. This is summarized
with the following circuit diagram.

This performs a non-linear operation M on the
space of density matrices, and following the tech-
niques of Abrams and Lloyd [13], one can use this op-
eration to “pry apart” quantum states which are ex-
ponentially close using polynomially many applica-
tions of the gadget. The proof is provided in Section
C of the supplementary material [20]. This answers
an open problem of [22] about the power of quantum

M = input

output

.

FIG. 1. Gadget used to show that cloning allows the
poly-time solution of NP-hard problems.

computers that can clone. Therefore, adding cloning
to quantum mechanics allows for both the poly-time
solution of NP-hard problems by brute force search,
and the ability to efficiently send superluminal sig-
nals.

Second, inspired by the final state projection
model [3], we consider a model in which one can
postselect on a generic state |ψ〉 of n qubits. Al-
though Aaronson [9] previously showed that allow-
ing for postselection on a single qubit suffices to
solve NP-hard and #P-hard problems using a sin-
gle oracle query, this does not immediately imply
that postselecting on a larger state has the same
property, because performing the unitary which ro-
tates |0〉n to |ψ〉 will in general require exponentially
many gates. Despite this limitation, this model in-
deed allows the polynomial-time solution of NP-hard
problems (as well as #P-hard problems) and super-
luminal signaling. To see this, first note that given a
gadget to postselect on |ψ〉, one can obtain multiple
copies of |ψ〉 by inputting the maximally entangled
state

∑

i |i〉|i〉 into the circuit and postselecting one
register on the state |ψ〉. So consider creating two
copies of |ψ〉, and applying the gadget shown in Fig-
ure 2, where the bottom register is postselected onto

|ψ〉, an operation we denote by |ψ〉 . For Haar-

random |ψ〉, one can show the quantity 〈ψ|Z ⊗ I|ψ〉
is exponentially small, so this gadget simulates post-
selection on |0〉 on the first qubit. The complete
proof is provided in Section D of the supplementary

•

|ψ〉 / Z ⊗ I

SWAP
|ψ〉 / |ψ〉

FIG. 2. Gadget showing postselection onto generic |ψ〉
is equivalent to postselection onto |0〉.
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material [20]. Therefore, allowing postselection onto
generic states is at least as powerful as allowing post-
selection onto the state |0〉, so by Aaronson’s results
[9] this model admits both superluminal signaling
and exponential speedups over Grover search.

In addition, we address an open question from [13]
regarding the computational implications of general
nonlinear maps on pure states. In [13], Abrams
and Lloyd argued that generic nonlinear maps al-
low for the solution of NP-hard problems and #P-
hard problems in polynomial time, except possibly
for pathological examples. In Section E of the sup-
plementary material [20], we prove this result rig-
orously in the case the map is differentiable. Thus
any pathological examples, if they exist, must fail
to be differentiable. (Here we assume the nonlinear-
ity maps pure states to pure states; as a result it
does not subsume our results on quantum comput-
ers which can clone, as the cloning operation may
map pure states to mixed states. A detailed discus-
sion is provided in Section C of the supplementary
material [20].) Unfortunately, the action of general
nonlinear maps on subsystems of entangled states
are not well-defined, essentially because they inter-
act poorly with the linearity of the tensor product.
We discuss this in detail in Section F of the sup-
plementary material [20]. Hence we are unable to
connect this result to signaling in the general case.

DISCUSSION

The central question in complexity theory is which
computational problems can be solved efficiently and
which cannot. Through experience, computer scien-
tists have found that the most fruitful way to for-
malize the notion of efficient is by demanding that
the resources, such as time and memory, used to
solve a problem must scale at most polynomially
with the size of the problem instance (i.e. the size of
the input in bits). A widely held conjecture, called
the quantum Church-Turing thesis, states that the
set of computational problems solvable in-principle
with polynomial resources in our universe is equal to
BQP, defined mathematically as the set of decision
problems answerable using quantum circuits of poly-
nomially many gates [23]. So far, this conjecture has
held up remarkably well. Physical processes which
conceivably might be more computationally power-
ful that quantum Turing machines, such as various
quantum many-body dynamics of Fermions, Bosons,

and anyons, as well as scattering processes in rela-
tivistic quantum field theories, can all be simulated
with polynomial overhead by quantum circuits [24–
28].

The strongest challenge to the quantum Church-
Turing thesis comes from quantum gravity. Indeed,
many of the recent quantum gravity models pro-
posed in relation the black hole firewalls paradox
involve nonlinear behavior of wavefunctions [3, 4]
and thus appear to suggest computational power
beyond that of polynomial-size quantum circuits.
In particular, the prior work of Abrams and Lloyd
suggest that such nonlinearities generically enable
polynomial-time solution to NP-hard problems, a
dramatic possibility, that standard quantum circuits
are not generally expected to admit [13, 29]. Here,
we have investigated several models and found a
remarkably consistent pattern; in each case, if the
modification to quantum mechanics is in a parame-
ter regime allowing polynomial-time solution to NP-
hard problems through brute-force search, then it
also allows the transmission of superluminal sig-
nals through entangled states. Such signaling allows
causality to be broken at locations arbitrarily far re-
moved from the vicinity of the black hole, thereby
raising serious questions as to the consistency of the
models. Thus, the quantum Church-Turing thesis
appears to be remarkably robust, depending not in
a sensitive way on the complete Hilbert-space for-
malism of quantum mechanics, but rather derivable
from more foundational operational principles such
as the impossibility of superluminal signaling. Some
more concrete conjectures on these lines are dis-
cussed in Section G of the supplementary material
[20].
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