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We study the collective motion of a suspension of rod-like microswimmers in a two-dimensional
film of viscoelastic fluids. We find that the fluid elasticity has a small effect on a suspension of
pullers, while it significantly affects the pushers. The attraction and orientational ordering of the
pushers are enhanced in viscoelastic fluids. The induced polymer stresses break down the large-
scale flow structures and suppress velocity fluctuations. In addition, the energy spectra and induced
mixing in the suspension of pushers are greatly modified by fluid elasticity.

The suspension of swimming microorganisms and their
aggregation have received growing attention for their
importance in pathology, reproduction and ecology [1].
The collective motion of microorganisms exhibits some
turbulent-like features, such as large-scale flow structures
[2, 3], strong fluctuations in velocity field [4], and en-
hanced diffusion and mixing [5]. The microorganisms
exhibit locally correlated motions [6] and aggregations
[2]. In contrast to the classic turbulence at high Reynolds
numbers, which involves energy transfer across different
length scales, the active turbulence is generated by the
collective motion of microorganisms. The input energy
is dissipated at the same length scale as it is produced
[7, 8]. Theoretical models based on continuum equations
[9] and discrete self-propelled particles [10–13] have been
proposed to investigate the stability and turbulent fea-
tures of microswimmer suspensions and active nematics
[14].

Microorganisms and spermatozoa often swim in non-
Newtonian fluids which are viscoelastic [15]. Examples
of these phenomena include bacteria forming biofilms by
producing extracellular polymeric substances [16], sper-
matozoa racing through cervical mucus in the mam-
malian female reproductive tract [17], and bacteria abun-
dance within oceanic gels of transparent exopolymer par-
ticles [18]. There has been a long debate about the ef-
fects of fluid elasticity on the speed of an isolated swim-
mer. Both an increase and a decrease in speed have been
observed in previous studies depending on the propul-
sion mechanism and geometry of the microorganisms and
fluid’s rheological properties [19]. In a dilute suspen-
sion of microorganisms, fluid elasticity changes the wave-
length of the most unstable disturbance [20] and leads to
microorganism aggregation in an external vortical flow
[21]. More recently, a continuum model was developed
[22] to couple the internally driven active nematic to the
polymer rheology. The results show that the polymer
additives may have a calming effects on the active flow,
while the full-coupling of the polymer and nematic orien-
tations greatly increases the complexity of spontaneous
flow. At high Reynolds numbers, polymer additives in a
turbulent flow suppress the large-scale fluctuations [23],
increase flow intermittency [24] and generate a significant
drag reduction [25]. The interplay between stretching of

polymer molecules and turbulent flow structures [26] is
one of the key aspects of viscoelastic turbulence.
In this letter, we present the first fully resolved nu-

merical simulation of collective dynamics of microswim-
mers in viscoelastic fluids. The present work introduces
fluid elasticity as a mean to tune the effective interac-
tions between swimmers and consequently their collec-
tive motion. Different from the previous works [20, 22],
we consider the hydrodynamics of the discrete rod-like
swimmers in a continuum viscoelastic fluid. We show
that the fluid elasticity has a stronger effect on a suspen-
sion of pushers than pullers. The polymer stress enhances
the local aggregation and polar alignment of pushers. At
large scales, polymers suppress the velocity fluctuations
and break down the large-scale flow structures. Accord-
ingly, energy spectra and induced mixing in a suspension
of microswimmers are modified by fluid elasticity.
We conduct two-dimensional simulations ofN identical

slender rod-like swimmers in a viscoelastic fluid. Simu-
lations are performed in a square box of size L with pe-
riodic boundaries in all directions. The number density
is defined as c = Nl2/L2. By imposing a slip velocity
Us = U0[± tanh(10s/l) + 1] on the surface of the swim-
mer, we consider both pushers (+) and pullers (-). Here,
U0 is the characteristic swimming speed, l is the swimmer
length, s ∈ [−l/2, l/2] is the length measured from the
head of the swimmer. In a Newtonian fluid, the swim-
ming speed of an isolated pusher and puller is U = U0;
their induced velocity fields are also the same but in the
opposite direction. Hereinafter, the results are normal-
ized as follows: the length is scaled by l, velocity by U0,
time by l/U0, and pressure and stress by ρνU0/l, where
ρ and ν are the fluid density and kinematic viscosity,
respectively.
The dimensionless equations for conservation of mo-

mentum and mass are

Re
Du

Dt
= −∇p+∇ · τ + f , ∇ · u = 0, (1)

where the Reynolds number Re = U0l/ν is 5 × 10−3,
D/Dt is the material time derivative, u is the velocity
vector, p is the pressure and τ is the deviatoric stress
tensor. The forcing term f is calculated using a dis-
tributed Lagrange multiplier method to accurately sat-
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isfy the boundary conditions on the swimmer [27] (see
more details in [28]). In a Newtonian fluid, the stress
tensor is τ = γ̇, where γ̇ = ∇u +∇uT is the shear rate
tensor. To model an elastic fluid, the Oldroyd-B con-
stitutive equation is used, in which τ can be split into
solvent and polymer contributions as τ = τ s+τ p, where
τ s = βsγ̇ and

τ p +De
▽

τ p = (1 − βs)(∇u+∇u
T), (2)

where βs = 0.5 is the ratio of the solvent viscosity to the
zero-shear-rate viscosity of the polymeric solution. The
Deborah number De = λ/tf is the ratio of the polymer
relaxation time λ to the characteristic flow time scale
tf = l/U0. In a viscoelastic turbulence, the flow field is
strongly affected by De. At De ≪ 1, polymer molecules
are essentially not deformed and the elastic effects are
negligible. In contrast, at De ≫ 1, elastic forces dom-
inate. The notation ▽ represents the upper-convected
derivative. The excluded volume effect is modeled by
adding a linear repulsive force whenever the distance be-
tween any two points on two swimmers is smaller than
the swimmer thickness.
The effects of fluid elasticity on a single swimmer are

first investigated. For a pusher, polymers are tangen-
tially stretched along the entire body [Fig. 1a], while
for a puller, the high elastic energy is stored near the
tail [Fig. 1b]. The flow field induced by the swimmers
are affected by fluid elasticity [Fig. 1c]. In a Newto-
nian fluid, the magnitude of the velocity field in front of
and behind the swimmer are the same |u| ∼ 1/r. Fluid
elasticity breaks this symmetry and its effects on push-
ers and pullers are different. The same 1/r scaling law
holds for pullers, while for pushers, velocity decreases
more rapidly at the rear side of the swimmer. The poly-
mer molecules are strongly stretched along the pusher,
once they pass the swimmer, the polymer extension can
not be supported any longer and the fluid elements con-
tract along the swimming direction and expand in the
normal direction. Therefore, streamlines expand at the
rear of the swimmer, and flow velocity along the swim-
mer direction dramatically decreases, similar to the “die
swell” phenomenon [36]. Fluid elasticity does not affect
the far-field velocity decay for either swimmers since the
polymers are mainly deformed near the swimmer. Fluid
elasticity hinders the swimming speed for both pushers
and pullers for an isolated swimmer. The average swim-
ming speed of pushers in a suspension is larger than an
isolated swimmer and monotonically decreases with De,
while it is less affected for a suspension of pullers [Fig.
1d]. Therefore, the role of fluid elasticity on a suspension
can be very different from its effects on a single swimmer.
In suspensions, the swimmers are initially uniformly

distributed and have the same swimming direction. The
nematic suspension is unstable for both swimmer types,
and they form clusters. Fig. 2 shows the flow field at
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FIG. 1. (color online). Distribution of elastic energy tr(τ p)/2
around a (a) pusher and (b) puller as they swim to the left,
De = 0.5. (c) The magnitude of the velocity field around
an isolated swimmer. (d) Swimming speed for an isolated
swimmer (triangles) and suspension (circles) as a function of
De.

t = 25 which has reached a statistically steady state. In
a Newtonian fluid, the flow induced by pushers is char-
acterized by large scale structures as large as the size of
computational domain. Pushers tend to align with their
neighbors due to the lateral hydrodynamic attractions
and they exhibit a local orientational order. The suspen-
sion of pullers in a film is very different from those in an
unconfined suspension. In a bulk fluid, large scale flows
are not observed and the pullers are randomly distributed
regardless of their concentration [11]. Whereas in a film,
the pullers aggregate at the front and form clusters [Fig.
2(b)].

In a viscoelastic fluid [Fig. 2(c) and (d)], the cluster
type is not qualitatively affected, i.e. the aggregation
of the swimmers is mainly determined by their swim-
ming mechanism. The typical cluster size for pushers in
a viscoelastic fluid is, however, larger and involves more
swimmers compared to the Newtonian fluid. Fluid elas-
ticity reduces the velocity fluctuations and suppresses the
fluid mixing (see more details in [28]). Fluid elasticity
reduces the size of large-scale flow structures in a sus-
pension of pushers, which can be as large as the com-
putational domain in a Newtonian fluid. These large-
scale high-speed regions occasionally form in a viscoelas-
tic fluid, but quickly break down into smaller patches (see
movies in [28]). Fluid elasticity has much weaker effects
on a suspension of pullers.

In Fig. 3(a), the aggregation of swimmers are quanti-
fied using pair correlation functions g(r) and g(θ), rep-
resenting the probability of finding a swimmer at center-
to-center distance r and angle θ with respect to another
swimmer. For pushers, g(r) peaks at around r = 0.2, rep-
resenting the strong tendency of lateral attraction. The
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FIG. 2. (color online). Flow field and distribution of swim-
mers at t = 25 for (a, c) pushers and (b, d) pullers. The num-
ber density is c = 1. De = 0 in (a, b) and 2.5 in (c, d), re-
spectively. Contours in the main frame and the right-bottom
quarter of (c, d) show the horizontal velocity component u and
elastic energy tr(τ p)/2, respectively. For movies see [28].

peak value of g(r) increases with De, showing an increase
in attraction due to fluid elasticity. In the inset, the plot
of g(θ) shows a tendency for polar alignment of push-
ers, and fluid elasticity further increases this effect. In
general, fluid elasticity enhances the aggregation of push-
ers, which is consistent with our results for two hydrody-
namically interacting pushers (see more details in [28]).
Shear flow in the gap between the two pushers generates
a strong polymer stretching which enhances the attrac-
tion. This mechanism is similar to the polymer-enhanced
wall attraction of a pusher-type squirmer [37].

The role of fluid elasticity on the flow coherent struc-
tures is characterized by the spatial and temporal cor-
relation functions as Cu(r) = 〈u(x + r) · u(x)〉/〈u2(x)〉
and Cu(∆t) = u(t+∆t) · u(t)/u2(t). Here, 〈〉 and −
represent the average in space and time, respectively. In
Fig. 3(b), we compare the averaged correlation functions
Cu(r) and 〈Cu(∆t)〉 for different suspensions. The spa-
tial velocity correlation for a pusher suspension is weak-
ened by fluid elasticity. The typical length of the aver-
aged flow structures, which is characterized by the value
of r at which Cu(r) = 0 only slightly decreases with De.
Similarly, the shape of the temporal velocity correlation
function is changed by fluid elasticity, while correlation
time ∆t ≃ 5 is less affected. Fluid elasticity reduces the
velocity magnitude of some regions of the large-scale flow,
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FIG. 3. (color online). (a) Pair correlation functions g(r)
and g(θ) (inset) for pushers (red) and pullers (blue). Contour
plots of g(r, θ) are given in [28]. (b) Averaged spatial and
temporal (inset) velocity correlations Cu(r) and 〈Cu(∆t)〉 of
the induced flow field. The number density is c = 1. Solid
triangle: pusher at De = 0, solid circle: pusher at De = 2.5,
open triangle: puller at De = 0 and open circle: puller at
De = 2.5.

while it is not strong enough to reverse the flow direction.
We now closely examine the instantaneous flow field to

better understand the interplay between polymer stretch-
ing, swimmer aggregation and large-scale flow structures
in a suspension of pushers. The time variation of the
kinetic and elastic energies in a suspension is written as

Re
dK

dt
+

dE

dt
= P − εK − εE , (3)

where K = 〈u2/2〉 and E = 〈tr(τ p)/2〉 are the spatial
averaged kinetic and elastic energies in the flow field.
P =

∑
i

∫
l
f · uds/L2 is the average power input gen-

erated by all the swimmers. εK = 〈βsγ̇ : γ̇〉 and
εE = E/De represent energy dissipations caused by the
Newtonian solvent and polymer molecules, respectively.
To quantify the pusher aggregation, we define a local
polar order parameter S1 =

∑
i

∑
j 6=i,r<1

cos(θ), where
r and θ are the distance and angle between pushers i
and j. Parameter S1 provides information about the
polar alignment of pushers, including the size and the
number of clusters. For N pushers aggregated in one
cluster with perfect polar alignment, S1 = N(N + 1).
Similarly, we define a local nematic parameter S2 =∑

i

∑
j 6=i,r<1

| cos(θ)|. The size of instantaneous flow
structure rc is determined by calculating Cu(rc) = 0. At
De = 0, K ≃ 1.8, S1 = 113.5, S2 = 1048.2 and rc ≃ 6.6;
at De = 2.5, K ≃ 0.4, S1 = 260.9, S2 = 1238.2, rc ≃ 5.9,
and E ≃ 2.6. Fluid elasticity reduces velocity fluctua-
tions, enhances polar and nematic alignment of pushers,
and slightly decreases the size of the average large-scale
flow structures.
To better understand the results, we compare fluctu-

ations for different variables, a′ = (a − a)/a, where a
is the variable of interest. In Fig. 4(a), K ′ and r′c
are strongly correlated in a Newtonian fluid, meaning
larger flow structures generate stronger velocity fluctua-
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FIG. 4. (color online). The fluctuation of the normalized
kinetic energy K′ (solid black line) correlates with the flow
structure size r′c (dashdot blue line) in a pusher suspension at
c = 1 in both (a) Newtonian and (b) viscoelastic (De = 2.5)
fluids, while there is no obvious correlation with the local
polar order parameter S1. The elastic energy E′ (dashed red
line) is anti-correlated with K′ in a viscoelastic fluid.

tions. No obvious correlation between S′
1 and r′c is ob-

served, indicating that the pusher aggregation is more
related to the local hydrodynamic interaction among the
swimmers, rather than large-scale flows. Both K ′ and
r′c oscillate with a typical time period ∆t ∼ 4, which
is approximately the time it takes for a pusher to swim
across large-scale flow structures. In Fig. 4(b), K ′ and E′

are anti-correlated with each other in a viscoelastic fluid.
Note that because of the Re factor in Eq. (3), the elastic
energy strongly affects the kinetic energy, even though
E′ is an order of magnitude smaller than K ′. The time
scale of fluctuations is approximately ∆t = 1 ∼ 2, which
is close to the polymer relaxation time λ = 2.5. Poly-
mer stretching in the suspension of microswimmers is
a highly nonequilibrium process. Once the large-scale
flow emerges, it starts to more strongly stretch poly-
mer molecules in the flow field. The polymer stretching
gradually reduces the velocity fluctuations and breaks
down the large-scale flow structures. After the polymer
molecules are relaxed, the velocity fluctuations are recov-
ered and large-scale flow structures emerge again.

The modification of the flow coherent structures by
fluid elasticity is also revealed in energy spectra. In Fig.
5, we compare the energy spectrum for different suspen-
sions. For all the cases, k−4 power-law is observed at
high wavenumbers k > kl, due to the shape of rod-like
swimmers. At low wavenumbers, the asymptote varies
with the swimmer type and the fluid environment. For
a suspension of pushers in a Newtonian fluid, we derive
the same scaling K(k) ∼ k−8/3 as in a bacterial sus-
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FIG. 5. (color online). Energy spectra K(k) and E(k) in a
microswimmer suspension at c = 1. Fluid elasticity reduces
the slope of the kinetic energy spectrum at k < kl in a pusher
suspension.

pension [7]. In a viscoelastic fluid, the kinetic energy
reduces to k−4/3 at low wavenumbers and slightly in-
creases at high wavenumbers k > kl. We speculate that
polymer molecules extract energy from large scales and
partially release it at small scales. In a viscoelastic tur-
bulent flow at high Re [38], the interaction between poly-
mer molecules and large scale flows effectively causes a
polymer-induced kinetic energy cascade. We expect the
same mechanism to be present in a suspension of push-
ers in a viscoelastic fluid, except that unlike viscoelastic
turbulent flows at high Re, this is the only energy cas-
cade. The elastic energy has a much more flat distribu-
tion over k < kl, indicating the polymer stretching by the
large scale flows. This is similar to the viscoelastic turbu-
lence at high Reynolds numbers [39]. The kinetic energy
dissipation is εK(k) = 2k2K(k) ∼ k−2/3 for a pusher
suspension in a Newtonian fluid. The viscous dissipation
is mainly caused by the large-scale flow structures, con-
sistent with the measurements in a bacterial suspension
[40]. In a viscoelastic fluid, polymers add an extra dissi-
pation εE to the fluid and εK(k) ∼ k2/3 at k < kl, i.e.
the strongest viscous dissipation occurs at the swimmer
length scale.
To conclude, based on the fully-resolved numerical sim-

ulations of suspension of rod-like swimmers, we have
shown that the effects of fluid elasticity on a suspension
can be very different from its effect on a single swimmer.
Particulary, fluid elasticity enhances the aggregation of
pushers mainly due to the local hydrodynamics. Large-
scale flow structures induce stronger polymer stretching,
and the polymer relaxation breaks down the large flow
structures and suppresses the velocity fluctuations. Our
work has extended the studies of collective motion in
Newtonian fluids to polymeric solutions. These results
can be useful in understanding the behavior of swim-
ming microorganisms in a more realistic fluid environ-
ment, such as bacteria in biofilm and oceanic exopolymer
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