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We demonstrate that a nonzero concentration nv of static, randomly-placed vacancies in graphene
leads to a density w of zero-energy quasiparticle states at the band-center ε = 0 within a tight-
binding description with nearest-neighbour hopping t on the honeycomb lattice. We show that
w remains generically nonzero in the compensated case (exactly equal number of vacancies on
the two sublattices) even in the presence of hopping disorder, and depends sensitively on nv and
correlations between vacancy positions. For low, but not-too-low |ε|/t in this compensated case, we
show that the density of states (DOS) ρ(ε) exhibits a strong divergence of the form ρDyson(ε) ∼
|ε|−1/[log(t/|ε|)](y+1), which crosses over to the universal low-energy asymptotic form expected on

symmetry grounds ρGW(ε) ∼ |ε|−1e−b[log(t/|ε|)]2/3 below a crossover scale εc � t. εc is found to
decrease rapidly with decreasing nv, while y decreases much more slowly.

PACS numbers: 71.23.-k;73.22.Pr;71.23.An;72.15.Rn

Static impurities, which give rise to random time-
independent terms in the single-particle Hamiltonian for
quasiparticle excitations of a condensed matter system,
can lead to the phenomenon of Anderson localization,
whereby quasiparticle wavefunctions lose their plane-
wave character and become localized [1]. Such local-
ization transitions and universal low-energy properties
of the localized phase have been successfully described
in many cases using effective field-theories [2, 3] whose
form depends on symmetry properties of the quasiparti-
cle Hamiltonian in the presence of impurities. In some
cases [4, 5], it has also been possible to refine these field
theoretical predictions using real-space strong-disorder
renormalization group ideas [6].

In this Letter, we study the effects of a nonzero con-
centration nv of static, randomly-located vacancies in
graphene. We use a tight-binding description for elec-
tronic states of graphene, with hopping amplitude t be-
tween nearest-neighbour sites on a honeycomb lattice,
and model vacancies by the deletion of the corresponding
site in this tight-binding model [7–11]. We focus on the
compensated case, i.e., exactly equal numbers of vacan-
cies on the two sublattices of the honeycomb lattice, and
demonstrate that vacancies generically lead to a nonuni-
versal density w of zero-energy quasiparticle states at the
band-center ε = 0 even in this compensated case, includ-
ing in the presence of hopping disorder. For low, but
not-too-low |ε|/t in this compensated case, the density
of states (DOS) ρ(ε) exhibits a strong divergence of the
form:

ρDyson(ε) ∼ |ε|−1/[log(t/|ε|)](y+1) , (1)

familiar in the context of various random-hopping prob-
lems in one dimension [12–20]. At still lower energies,
below a crossover scale εc that is several orders of mag-
nitude smaller than t even for moderately small values of
nv (0.05–0.1), we show that the DOS crosses over to the

low-energy asymptotic behaviour [4–6, 21] of the chiral
orthogonal universality class (to which our tight-binding
model belongs on symmetry grounds):

ρGW(ε) ∼ |ε|−1e−b[log(t/|ε|)]2/3 . (2)

The density of zero-energy states w depends sensitively
on correlations between vacancies and decreases as nv is
lowered. The crossover energy εc is found to decrease
rapidly with decreasing w, while y (in fits to Eq. (1) for
|ε| > εc) decreases much more slowly. On comparing the
corresponding crossover length scale lc, defined as the
mean spatial separation between nonzero energy modes
with |ε| < εc, with lw ≡ w−1/2, the mean spatial separa-
tion between zero-energy states, we find that lc tracks lw
up to a nonuniversal prefactor. Thus, our results imply
that the w → 0 limit of the DOS is singular and does
not commute with the ε → 0 limit: For any w > 0, the
true asymptotic form ρGW(ε) cannot be obtained from an
extrapolation of results obtained for εc < ε � t, which
instead reflect the intermediate-energy physics encoded
in the form ρDyson(ε).

Our work sheds light on an interesting question mo-
tivated by the results of Willans et. al., who found a
vacancy-induced DOS of the form ρDyson(ε) at not-too-
low energies in their study of Majorana excitations of
Kitaev’s honeycomb model [22]: Does a nonzero vacancy
density lead to a low-energy limit that is qualitatively
different from the asymptotic behaviour expected in the
chiral orthogonal universality class of quasiparticle local-
ization? In recent work that addressed this question in
the context of graphene [23], it was argued that vacan-
cies lead to a new term in the low-energy field theory,
which causes the DOS to take on the form ρDyson(ε),
Eq. (1), with y = 1/2 at asymptotically low energies,
rather than the asymptotic form ρGW(ε), Eq. (2), ex-
pected on symmetry grounds. In parallel work [24], this
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FIG. 1: wL, the density of zero modes in an L × L sample,
tends to a nonzero thermodynamic limit w that depends on
nv, the concentration of vacancies.

prediction was found to be consistent with numerical re-
sults for the DOS.

While we do find that the DOS fits well to ρDyson(ε)
at intermediate energies (εc � ε � t), albeit with a
nonuniversal y, our conclusion regarding the asymptotic
low energy behaviour is clearly very different, and raises
two perhaps more interesting questions: When εc � t,
are the crossover exponent y and crossover energy εc
“universally” determined by the zero-mode density w,
although the function w(nv) itself depends sensitively on
microscopic details such as correlations between vacan-
cies? Can this crossover be understood within a renor-
malization group description of the low-energy physics,
perhaps using the ideas of Ref. 23? Leaving these inter-
esting questions for future work, we devote the remainder
of this Letter to an account of the calculations that lead
us to our results, and thence, to these questions.

We choose the lattice spacing of the honeycomb lattice
as our unit of length and measure all energies in terms of
the hopping amplitude t, which is set by the bandwidth
of the π-band of undoped graphene. We focus on the
compensated case, with exactly nvL

2 vacancies placed
randomly on each sublattice of a finite L×L honeycomb
lattice with L2 unit cells (2L2 sites). The spectrum of
single-particle states can be obtained by diagonalizing
the real symmetric matrix H

H =

(
0 TAB

T †AB 0

)
(3)

where TAB is the (1−nv)L2-dimensional matrix of ampli-
tudes for hopping from the undeleted sites of the B sub-
lattice to their undeleted A sublattice neighbours, and
T †AB is the transpose of this matrix (the spin label of the
electronic quasiparticles is dropped since we do not study
magnetic properties or sources of spin-flip scattering in
this Letter).

The purely off-block-diagonal form of H reflects the
“chiral” symmetry of the problem, corresponding to the
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FIG. 2: Four B-sublattice (six A-sublattice) vacancies ar-
ranged in a “4-triangle” pattern (“R6” motif) give rise to
a zero mode of H living on A-sublattice sites (B-sublattice
sites) within the 4-triangle (R6 motif). While hopping disor-
der eliminates the 4-triangle zero mode, it only changes the
wavefunction of theR6 zero mode without changing its energy.

bipartite structure of the honeycomb lattice, which guar-
antees that every eigenstate with energy ε > 0 has a
corresponding eigenstate at energy −ε. In order to elim-
inate zero modes of H in the pure L × L lattice [25–
27], we choose even values of L and impose antiperiodic
boundary conditions along the x̂ direction, while termi-
nating the lattice in the ŷ direction in a pair of armchair
edges. We also impose a nearest-neighbour and next-
nearest-neighbour exclusion constraint on the vacancies,
and do not allow them to interrupt the armchair edges.
These restrictions, along with the compensated nature
of the vacancy disorder, eliminate all previously studied
and well-understood sources of vacancy-induced [9, 28]
zero modes in the spectrum of H.

We find it convenient to focus on the symmetric ma-
trix T †ABTAB , which has a single eigenvalue ε2 for every
pair of nonzero eigenvalues (ε,−ε) of H. Zero modes of

T †ABTAB , with wavefunction living entirely on the B sub-
lattice, map on to exactly half of the zero modes in the
spectrum of H, while zero modes of the symmetric ma-
trix TABT

†
AB , with wavefunction living entirely on the A

sublattice, make up the other half of the null space of H.
We use the ALGOL [29] routines of Martin and Wilkin-
son [30] to compute the number NΛ of eigenvalues of the

banded matrix T †ABTAB which are smaller in magnitude
than some positive number t2 × 10−Λ. Our implementa-
tion [31] uses calls to the GNU multiprecision library [32]
for all arithmetic operations, including comparison of the
magnitudes of two numbers, and has been benchmarked
against routines from the LAPACK library [33] as well as
C-translations (used in earlier work [6]) of the ALGOL
routines of Martin and Wilkinson.

Anticipating that the physics of interest to us spans
many orders of magnitude in energy ε, we define the
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‘log-energy’ Γ = log10(t/|ε|), and compute N
(i)
tot(Γ, L) ≡

N (i)
Λ=2Γ/L

2 for the ith L × L random sample using val-
ues of log-energy drawn from an equispaced grid ranging

from Γ ∼ 1 to Γ ∼ 100. For large enough Γ, N
(i)
tot(Γ, L)

plateaus out to a constant value which represents the

density of zero modes w
(i)
L of that sample. For not-

too-small nv (nv ≥ 0.05) for which we are able to ac-

cess this plateau, we separately keep track of w
(i)
L and

N
(i)
L (Γ) ≡ N

(i)
tot(Γ, L) − w(i)

L . From the position, Γ
(i)
g (L),

of the last downward step in N
(i)
tot(Γ, L), we also obtain

the spectral gap ε
(i)
g (L) ≡ t×10−Γ(i)

g (L) corresponding to

the lowest pair of nonzero eigenvalues ±ε(i)g for that sam-
ple. Analyzing this data for up to 3000 samples for each
value of L and nv, we obtain statistically reliable esti-
mates of the corresponding disorder-averaged quantities
wL and NL(Γ). The density of states ρL(ε) can then be
obtained from NL using the relation ρL(ε) ≡ 1

2ε
dNL

dΓ . Ad-
ditionally, we estimate fL, the probability that an L×L
sample has at least one pair of zero modes, and mea-
sure the histogram of Γg(L). The position of the peak
in the latter provides us an estimate of Γ∗g(L), the most
probable value of Γg(L). For the smallest values of nv,
which require multiprecision computation at impractica-

bly large Γ in order to access the plateau in N
(i)
tot(Γ, L)

(and thence, wiL), we instead compute dNL

dΓ by numerical

differentiation of N
(i)
tot(Γ, L).

Extrapolating our results for fL (Supplemental Mate-
rial [34]) and wL (Fig. 1) to obtain f ≡ limL→∞ fL and
w ≡ limL→∞ wL, we find that f = 1, and that w de-
pends sensitively on nv (Fig. 1). To understand these

results, we observe that TABT
†
AB (T †ABTAB) must have

a zero mode, with wavefunction shown in Fig. 2, if four
of the B-sublattice vacancies (six of the A-sublattice va-
cancies) are arranged in the specific “4-triangle” pattern
(“R6 motif”) shown in Fig. 2, with no restrictions on
the positions of the other vacancies. H must therefore
have a pair of zero modes if a single 4-triangle or R6

motif occurs anywhere in the sample on either sublat-
tice. Since there is a nonzero probability of finding a
4-triangle at a given location, this already implies that a
large enough sample will certainly have at least one zero
mode, i.e., f = 1. Additionally, one has an elementary

lower-bound on w
(i)
L in terms of the numbers N

(i)
∆4A

and

N
(i)
∆4B

of 4-triangles on A and B lattices in a given sam-

ple: w
(i)
L ≥

[
max(N

(i)
∆4A

, N
(i)
∆4B

)
]
/L2, implying w ≥ n∆4

,

where n∆4 is the ensemble averaged concentration of 4-
triangles in the thermodynamic limit. When the vacan-
cies obey the exclusion constraints described earlier, it is
not possible to produce a similar zero mode with fewer
than four vacancies (Supplemental Material [34]). Thus,
we expect w ∼ n4

v in the nv → 0 limit.

While our lower bound can be strengthened somewhat
by including larger versions of the 4-triangle motif (Sup-
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FIG. 3: NL(Γ) at the three largest values of L studied for
nv = 0.0625 and nv = 0.1. Insets show N(Γ) obtained by
extrapolation to the thermodynamic limit. Circles demarcate
the crossover region centered at the crossover scale Γc. Data
for Γ . Γc fits well to power-law form NDyson(Γ) with the
values of y indicated in each case, while the large-Γ regime
fits well to the modified Gade-Wegner form NGW(Γ).

plemental Material [34]), they do not change this lim-
iting behaviour. However, our results (Fig. 1) suggest
that this limiting behaviour sets in only for nv � 0.05,
for which a direct computation of w would require ac-
cess to impracticably large Γ. For nv & 0.05, 4-triangles
are not the dominant contribution to w (Supplemental
Material [34]), which we expect arises instead from gen-
eralizations of the R6 motif: Such “R-type” regions have
more undeleted sites belonging to one sublattice than the
other, but are connected to the rest of the lattice only via
sites belonging to the other sublattice. Like the R6 zero
mode, all such R-type zero modes are robust to disor-
der in the nearest-neighbour hopping amplitudes (Sup-
plemental Material [34]). Unlike zero modes associated
with specific patterns like 4-triangles, these R-type zero
modes cannot be eliminated by any additional local con-
straints on the vacancy positions. They are therefore a
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FIG. 4: nv dependence of crossover scale Γc and power-law
exponent y for samples with compensated random dilution.

generic feature of the diluted graphene lattice. Thus we
see that a nonzero concentration nv of vacancies leads
to a density w of zero modes of H, where w depends
sensitively on nv, and on correlations in the positions of
vacancies, but remains generically nonzero even in the
compensated case, including in the presence of hopping
disorder.

Figure 3 displays NL(Γ) for nv = 0.0625 and nv = 0.1
for the three largest sizes used in our extrapolations to
the thermodynamic limit. Since we expect finite-size ef-
fects to dominate for Γ > Γ∗g(L), we estimate Γ∗g(L) from
histograms of Γg(L) (Supplemental Material [34]) and re-
strict attention to Γ < Γ∗g(Lmin), where Lmin, the small-
est of the sizes used in our extrapolations, is chosen large
enough that fLmin

≈ 1 in order to ensure that the physics
of zero modes is correctly captured in all our analysis. In
this range of Γ, we can reliably extrapolate (see Supple-
mental Material [34]) from our data to obtain the thermo-
dynamic limitN(Γ) displayed in the inset of Fig. 3. Up to
a fairly well-defined and readily-identified crossover scale
Γc(L) ≡ log10(t/|εc(L)|), NL(Γ) is found to fit well to a
power-law form NDyson(Γ) ≡ cΓ−y. However, for larger
Γ beyond Γc, the asymptotic fall-off is clearly faster than
a power law. Γc(L) increases slightly with L over the
range of L studied, but saturates at large L to a finite
thermodynamic limit Γc that marks the presence of the
same crossover in the limiting curve N(Γ). Thus, N(Γ)
is again fit well by the power-law form NDyson for Γ . Γc,
but falls off much faster in the large-Γ regime.

Given that H belongs to the chiral orthogonal uni-
versality class, standard universality arguments predict
that N(Γ) and NL(Γ) should, at large enough Γ, fol-
low the modified Gade-Wegner form [4–6, 21] NGW(Γ) ≡
aΓ1/3e−bΓ

2/3

. From Fig. 3, we see that this form in-
deed provides a very good fit in the asymptotic large-Γ
regime. The same crossover is also visible at nv = 0.05
and nv = 0.075. From Fig. 4, we see that y decreases
gradually with nv, while Γc increases extremely rapidly
as we go to smaller values of nv, thereby limiting our abil-
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at nv = 0.02 in the crossover regime converges
to the thermodynamic limit for L ∼ 200 and fits well to the

form
dNDyson(Γ)

dΓ
, with a value of y consistent with the trends

established at larger nv for Γc and y (Fig. 4). Based on these
trends, we expect N(Γ) to cross over to the asymptotic form
NGW at much larger values of Γ, for which we are unable to
reliably compute N(Γ) due to computational constraints.
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FIG. 6: The crossover length-scale lc ≡ N(Γc)
−1/2 tracks the

mean spatial separation lw ≡ w−1/2 between zero modes rea-
sonably well for compensated random dilution. From left to
right, the exhibited data points correspond to vacancy densi-
ties 0.1, 0.075, 0.0625, and 0.05.

ity to directly study this crossover for nv . 0.05. How-
ever, one can nevertheless reliably compute the exponent
y that characterizes the behaviour of ρ(ε) in the inter-
mediate regime t � |ε| � εc (Fig. 5), and confirm that
its value evolves smoothly (Fig. 4) down to these small
values of nv. This strongly suggests that the crossover
identified by us is an intrinsic and generic feature of the
density of states for any nonzero nv.

The corresponding crossover length scale lc ≡
N(Γc)

−1/2, which represents the mean spatial separa-
tion between nonzero energy modes with |ε|/t < 10−Γc ,
grows relatively slowly (Fig. 6) as w is decreased, with
lc . 50 lattice units even at the smallest value of w stud-
ied (corresponding to nv = 0.05). This explains why our
extrapolations to the thermodynamic limit using finite-
size data with L ∼ 200 remain reliable for all nv stud-
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ied. From Fig. 6, which compares lc for the randomly
diluted samples with lw ≡ w−1/2, the mean spatial sepa-
ration between zero modes, we also see that lc tracks lw
(up to a nonuniversal prefactor). This suggests that the
crossover identified in this Letter is controlled primarily
by the density of zero modes. Additional support for
this idea comes from our study of samples diluted with
an equal number of randomly placed 4-triangles (instead
of individual vacancies) on each sublattice (Supplemen-
tal Material [34]), which show the same crossover, but
with very different values of εc and y that are better
predicted by the zero mode density w as opposed to the
vacancy density. This then leads us to the questions iden-
tified earlier: Is the physics of this crossover “universally
controlled” by the value of w (i.e., independent of corre-
lations between vacancy-positions and other microscopic
details) in the limit of small w, and can it be understood
via a renormalization group description of the low-energy
physics?

Acknowledgements We thank M. Barma and D. Dhar
for useful comments on a previous draft, and grate-
fully acknowledge use of computational resources funded
by DST (India) grant DST-SR/S2/RJN-25/2006, in ad-
dition to departmental computational resources of the
Dept. of Theoretical Physics of the TIFR. KD and OM
gratefully acknowledge hospitality of ICTS-TIFR (Ben-
galuru) and IISc (Bengaluru) during completion of part
of this work. SS gratefully acknowledges funding from
DST (India) and DAE -SRC (India) and support from
IISc (Bengaluru) during completion of part of this work.
OM also acknowledges support by the NSF through grant
DMR-1206096.

[1] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57,
287 (1985).

[2] A. Altland, B. D. Simons, and M. R. Zirnbauer, Phys.
Rep. 359, 283 (2002).

[3] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355
(2008).

[4] R. Gade, Nucl. Phys. B 398, 499 (1993).
[5] R. Gade and F. Wegner, Nucl. Phys. B 360, 213 (1991).
[6] O. I. Motrunich, K. Damle, and D. A. Huse, Phys. Rev.

B 65, 064206 (2002).
[7] P. T. Araujo, M. Terrones, M. S. Dresselhaus, Materials

Today 15, 98 (2012).
[8] G. Forte, A. Grassi, G. M. Lombardo, A. La Magna,

G. G. N. Angilella, R. Pucci, R. Vilardi, Phys. Lett. A
372, 6168 (2008).

[9] V. M. Pereira, J. M. B. Lopes dos Santos, and A. H. Cas-

tro Neto, Phys. Rev. B 77, 115109 (2008).
[10] V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos,

N. M. R. Peres, and A. H. Castro Neto, Phys. Rev. Lett.
96, 036801 (2006).

[11] T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim,
and M. I. Katsnelson, Phys. Rev. Lett. 105, 056802
(2010).

[12] F. J. Dyson, Phys. Rev. 92, 1331 (1953).
[13] G. Theodorou and M. H. Cohen, Phys. Rev. B 13, 4597

(1976).
[14] T. P. Eggarter and R. Riedinger, Phys. Rev. B 18, 569

(1978).
[15] O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B

63, 134424 (2001).
[16] O. Motrunich, K. Damle, and D. A. Huse Phys. Rev. B

63, 224204 (2001).
[17] I. A. Gruzberg, N. Read, and S. Vishveshwara, Phys.

Rev. B 71, 245124 (2005).
[18] P. W. Brouwer, A. Furusaki, I. A. Gruzberg, and

C. Mudry, Phys. Rev. Lett. 85, 1064 (2000).
[19] P. W. Brouwer, C. Mudry, and A. Furusaki, Phys. Rev.

Lett. 84, 2913 (2000).
[20] M. Titov, P. W. Brouwer, A. Furusaki, and C. Mudry,

Phys. Rev. B 63, 235318 (2001).
[21] C. Mudry, S. Ryu, A. Furusaki, Phys. Rev. B 67, 064202

(2003).
[22] A. J. Willans, J. T. Chalker, and R. Moessner, Phys.

Rev. B 84, 115146 (2011)
[23] P. M. Ostrovsky, I. V. Protopopov, E. J. Konig,

I. V. Gornyi, A. D. Mirlin, and M. A. Skvortsov, Phys.
Rev. Lett. 113, 186803 (2014).

[24] V. Hafner, J. Schindler, N. Weik, T. Mayer, S. Balakr-
ishnan, R. Narayanan, S. Bera, and F. Evers, Phys. Rev.
Lett. 113, 186802 (2014).

[25] E. H. Lieb and M. Loss, Duke Math. J. 71, 337 (1993).
[26] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002

(2002).
[27] L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
[28] P. W. Brouwer, E. Racine, A. Furusaki, Y. Hatsugai,

Y. Morita, and C. Mudry, Phys. Rev. B 66, 014204
(2002).

[29] https://en.wikipedia.org/wiki/ALGOL
[30] R. S. Martin and J. H. Wilkinson in Handbook

for Automatic Computation, Vol. II: Linear Algebra,
J. H. Wilkinson and C. Reinsch (eds.), Springer-Verlag
(Berlin, 1971).

[31] S. Sanyal, Ph.D thesis, Tata Institute
of Fundamental Research, Mumbai, 2014,
http://theory.tifr.res.in/Research/Thesis/

[32] https://en.wikipedia.org/wiki/
GNU Multiple Precision Arithmetic Library

[33] https://en.wikipedia.org/wiki/LAPACK
[34] See Supplemental Material at

http://link.aps.org/supplemental/xx/PhysRevLett.yy
for additional numerical and analytical evidence in
support of our conclusions.


	References

