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The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny
energy differences between differently spin polarized states, and thereby serve as an extremely
sensitive test of the quantitative accuracy of the theory of the fractional quantum Hall effect, and,
in particular, of the role of Landau level mixing in lifting the particle-hole symmetry. We report
on an accurate quantitative study of this physics, evaluating the effect of Landau level mixing in
a non-perturbative manner using a fixed-phase diffusion Monte Carlo method. We find excellent
agreement between our calculated critical Zeeman energies and the experimentally measured values.
In particular, we find, as also do experiments, that the critical Zeeman energies for fractional
quantum Hall states at filling factors ν = 2 − n/(2n ± 1) are significantly higher than those for
ν = n/(2n±1), a quantitative signature of the lifting of particle-hole symmetry due to Landau level
mixing.

The role of particle-hole symmetry in the lowest Lan-
dau level (LLL) as well as its breaking due to Landau
level (LL) mixing has come into renewed focus in the
contexts of the competition between the Pfaffian and the
anti-Pfaffian wave functions for the ν = 5/2 fractional
quantum Hall (FQH) effect [1–9] and of the nature of
the composite-fermion (CF) Fermi sea at ν = 1/2 [10–
24]. LL mixing also affects various observable quantities
in FQH effect, and a lack of its quantitative understand-
ing has been one of the major impediments towards the
goal of an accurate comparison between theory and ex-
periment. The effect of LL mixing has been treated in
a perturbative approach [4–9], but the extent of its va-
lidity for typical experiments has remained unclear, be-
cause the relevant parameter controlling the strength of
LL mixing, namely the ratio of the Coulomb interaction
to the cyclotron energy κ = (e2/ε`)/~ωc, is typically ∼ 1
and sometimes as high as ∼ 2. (Here ` =

√
~c/eB is

the magnetic length, ε is the dielectric constant of the
background material, and ωc = eB/mbc is the cyclotron
frequency.)

We study in this work the effect of LL mixing through
the non-perturbative method of fixed-phase diffusion
Monte Carlo [25–27]. We focus here on the phase transi-
tions between differently spin polarized FQH states as a
function of the Zeeman energy, which are an ideal testing
ground for the role of LL mixing, both because a wealth
of experimental information exists for the critical ener-
gies where such transitions occur [28–40], and because
they depend sensitively on LL mixing [40, 41]. The crit-
ical Zeeman energy Ecrit

Z , quoted below in terms of the
dimensionless ratio αcrit

Z = Ecrit
Z /(e2/ε`), is a direct mea-

sure of the tiny energy differences between differently
spin polarized states, and thus serves as an extremely
sensitive test of the quantitative accuracy of the theory.

In particular, a longstanding puzzle has been that the
observed values of αcrit

Z for spin transitions at the filling
factor ν = 2 − n/(2n ± 1) are significantly higher than
those at ν = n/(2n±1). Because particle-hole symmetry
in a system confined to the LLL guarantees that the tran-
sitions at ν and 2− ν occur at the same αcrit

Z , it is clear
that LL mixing, which breaks particle-hole symmetry,
is responsible for the effect. Surprisingly, for heterojunc-
tion samples, αcrit

Z for spin transitions at the filling factor
ν = 2 − n/(2n ± 1) are higher even than the theoretical
values for systems with zero width and zero LL mixing,
which is counterintuitive because the corrections due to
finite width and finite LL mixing are both expected to
weaken the interaction and thus reduce αcrit

Z .

If fixed-phase DMC can be demonstrated to provide a
quantitative account of these experiments, it will not only
reveal the role of Landau level mixing in a quantitative
fashion but, in principle, also enable an investigation of
the effect of LL mixing on various other issues, including
the 5/2 Pfaffian/anti-Pfaffian state and the 1/2 CF Fermi
sea, in a non-perturbative approach.

The Diffusion Monte Carlo (DMC) method [42, 43]
solves the many-body Schrödinger equation by noting
that its imaginary time (t → it) version can be inter-
preted as a diffusion equation. The wave function Φ of
interest plays the role of the density of diffusing particles,
which is valid when Φ is always positive, such as for Bose
systems in their ground states. In order to treat Fermi
statistics, a fixed-node approximation is used which does
not allow diffusion through the nodal surface. The fixed-
node DMC, suitable for real wave function, cannot be ap-
plied directly to FQH systems, which, due to the broken
time-reversal symmetry, produce complex valued eigen-
functions for interacting fermions. For such systems,
a fixed-phase approximation was introduced by Ortiz,
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Ceperley and Martin [25] who express the wave func-
tion as Φ(R) = |Φ(R)|eiϕT (R), and solve the appropri-
ate Schrödinger equation for the real non-negative wave
function |Φ(R)| by DMC. Here R = (r1, r2, ..., rN ) de-
notes the coordinates collectively, and the phase ϕT (R)
is fixed with the help of an initial “trial” or “guiding”
wave function ψT (R) = |ψT (R)|eiϕT (R). The DMC al-
gorithm gives the lowest energy consistent with the pre-
scribed trial phase ϕT (R) and the accuracy of the results
depends on the choice of ϕT (R). It was found by Güçlü
and Umrigar[44] that the Coulomb eigenstate of the LLL
subspace is an excellent choice for ψT , i.e., LL mixing
does not significantly alter the phase. We will therefore
choose for our fixed-phase DMC the phases of the wave
functions of the CF theory, which are known to accu-
rately represent the actual Coulomb eigenstates [45, 46].

We follow the method presented by Melik-Alaveridan,
Bonesteel and Ortiz [26, 27], who have generalized the
fixed-phase DMC method to the spherical manifold [47].
The electrons are confined to the surface of a sphere [48]
of radius R0 with a magnetic monopole of strength Q
at the center, producing a total flux of 2Qφ0. In or-
der to simulate the diffusion process conveniently, a
stereographic projection is employed to represent elec-
trons positions by planar coordinates r = (x, y) =
(cosφ, sinφ) cot(θ/2), where θ and φ are the usual spher-
ical angles. The Hamiltonian is then written as

H =
1

2mb

∑
i

D(ri)[−i~∇i + eA(ri)]
2 + V (R), (1)

where D(ri) = (1 + r2
i )2/4R2

0. The vector poten-

tial A = −~cQ
eR cot θφ̂ produces a radial magnetic field

B = 2Qφ0/4πR
2
0 in the Haldane gauge. At filling factor

ν = n
2pn±1 , for trial function ψT (R) we choose the the

wave functions of the CF theory (suppressing the spin
part) [45, 46]

Ψn/(2pn±1) = PLLLΦ±n↑Φ±n↓Φ2p
1 (2)

Here Φn is the wave function for n filled Landau lev-
els, Φ−n ≡ [Φn]∗, and PLLL denotes LLL projection,
performed below using the method in Refs. [46, 49–51].
The state of spinful composite fermions with n↑ spin-up
and n↓ spin-down filled Λ levels (CF LLs) is denoted as
(n↑, n↓), with n = n↑ + n↓.

Our goal is to compute the critical Zeeman energy
where a FQH system undergoes a transition from a fully
spin-polarized (FP) state into either a partially spin-
polarized (PP) or a spin-singlet (SS) state. We first ob-
tain the per particle interaction energies E(n↑,n↓) of the
states (n↑, n↓). The dimensionless critical Zeeman en-
ergy αcrit

Z for the transition between two successive states
(n↑, n↓) and (n↑ − 1, n↓ + 1) is given by

αcrit
Z = (n↑ + n↓)

[
E(n↑,n↓) − E(n↑−1,n↓+1)

e2/ε`

]
. (3)

Many previous studies [41, 51–53] have used variational
Monte Carlo (VMC) to evaluate αcrit

Z using the LLL wave
functions of Eq. 2. (For other approaches, see Refs. 54–
57.) To study the effect of LL mixing, we perform
DMC as a function of κ, which, for parameters appro-
priate for electron-doped GaAs (ε = 12.5, electron band
mass mb = 0.067me), is given by κ ≈ 2.6/

√
B[T ] ≈

1.28
√
ν/(ρ/1011cm−2), where ρ is the areal density. The

DMC result reduces to VMC result in the limit of κ = 0.
The non-zero transverse width of GaAs-AlxGa1−xAs

heterojunctions and quantum wells also has a quantita-
tive effect, producing an effective two-dimensional inter-
action dependent on the transverse wave function ξ(z):

V eff(r) =
e2

ε

∫
dz1

∫
dz2

|ξ(z1)|2|ξ(z2)|2

[r2 + (z1 − z2)2]1/2
, (4)

where z1 and z2 denote the coordinates perpendicular to
the 2D plane, and r =

√
(x1 − x2)2 + (y1 − y2)2. V eff(r)

is less repulsive than the ideal 2D interaction e2/εr at
short distances. In this work, we calculate the critical
Zeeman energy using V eff(r) to include the effect of the
finite transverse width. A realistic ξ(z) for each density
and geometry is obtained by solving the Schrödinger and
Poisson equations self-consistently through the local den-
sity approximation [58]. Note that the finite-width cor-
rection the VMC results depends on the density through
ξ(z).

In the following, we show our numerical results for
αcrit

Z in the thermodynamic limit and compare them with
those obtained from transport experiments. We have
used two methods to perform extrapolation to N → ∞.
In Method I, we extrapolate the energy difference to the
thermodynamic limit. For this purpose, we correct for
the finite size deviation of the density from its asymptotic
value by multiplying the finite-size energy with a fac-
tor (2Qν/N)1/2 [59], and, if needed, also interpolate the
energy to the appropriate particle number. In Method
II, we extrapolate the density-corrected per particle en-
ergies of SS, FP or PP states to thermodynamic limit
separately, and then obtain αcrit

Z according to Eq. (3).
The results quoted below are obtained from Method I
unless specified otherwise [47]. The errors shown below
arise primarily from the extrapolation; the statistical er-
ror from Monte Carlo sampling is comparatively negligi-
ble.

We first study the FQH states with fillings ν = n
2n+1 .

Critical Zeeman energies αcrit
Z for ν = 2/5, 3/7 and 4/9

are shown in Fig. 1 for an ideal 2D system with width
w = 0, for GaAs-AlxGa1−xAs quantum wells with widths
w = 30 and 50 nm, and also for a GaAs-AlxGa1−xAs het-
erojunction (HJ). αcrit

Z calculated from DMC and VMC
are plotted as a function of density ρ with solid and
dashed lines respectively. The value of κ is shown at the
upper x-axis. For quantum wells, αcrit

Z from VMC (no LL
mixing) decreases with increasing w or ρ. The behavior
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FIG. 1. (Color online) The theoretical critical Zeeman energies αcrit
Z = Ecrit

Z /(e2/ε`) for ν = 2/5 (left), 3/7 (middle), 4/9
(right) are shown with empty symbol with error bars, calculated from both DMC (solid line) and VMC (dashed line), for ideal
2D system (w = 0), quantum wells with widths w = 30nm and 50nm, and heterojunction (HJ). The symbols ρ denotes the
electron density. The solid lines for quantum wells and heterojunction display a “hill” shape, where, roughly speaking, LL
mixing correction dominates on the left of the “hill” (at small ρ) and finite width correction on the right (at large ρ).

of the αcrit
Z from DMC, which includes the correction due

to LL mixing, is more complicated. At large ρ (small κ),
the DMC results are close to the VMC results for each
width. On the other hand, with decreasing ρ (increasing
κ), the DMC results are increasingly lower than the VMC
results. For κ & 2 the DMC results are largely insensi-
tive to w, implying that the dominating correction here
is due to LL mixing. We note that we have not included
in our calculations any physics relating to an instability
of the FQH effect at large κ [60].

One of the main messages of our calculation is that LL
mixing and finite-width corrections significantly reduce
the critical Zeeman energy at ν = n

2n+1 , by a factor of 2
or more for the experimental systems. This is consistent
with the fact that, in typical experiments, the FQH states
at ν < 1/2 are fully spin polarized even with zero tilt
of magnetic field. The transitions at ν = 2/5, 3/7 have
been seen by Kang et al. [32] in transport experiments
only by significantly decreasing the Landé factor g0 with
the application of hydrostatic pressure.

For FQH states at ν = n
2n−1 , where the composite

fermions are in a negative effective magnetic field, the
wave functions of non-fully spin polarized states in Eq. 2,
evaluated with the projection method in Ref. [49, 51] are
not as accurate as those for n/(2n+ 1) and are known to
produce, for w = 0 and κ = 0, values of αcrit

Z that are off
by up to a factor of two relative to the exact results [41].
For example, for ν = 2/3, the value of αcrit

Z = 0.0082(1)
obtained from the wave functions in Eq. 2 is much lower
than the value 0.0183(5) obtained from exact diagonal-
ization (ED) for κ = 0 at w = 0. The reason is because
our projection method[49, 51] slightly overestimates the
probability of spatial coincidence of electrons in the non-
fully polarized states, and thereby overestimates their
energies. (The “hard-core” projection of Ref. [61] pro-
duces very accurate wave functions, but is not amenable

to numerical evaluations.) Fortunately, we find that for
κ & 2 the results are insensitive to slight differences in
the initial trial wave function ψT because of the rela-
tively large modification due to LL mixing. Taking again
the example of ν = 2/3, for κ = 1.91, both the exact
wave function and the wave function in Eq. 2 produce
αcrit

Z ≈ 0.0090 (see Fig. 3 and Fig. S1 in the Supplemen-
tary Material [47]).

Fig. 2 shows the comparison between experimental
data (filled symbol) and theoretical results (empty sym-
bols) for αcrit

Z for many states at ν = n/(2n ± 1). The
theoretical results are obtained with DMC for the spe-
cific experimental parameters (ρ, w). The black empty
circles show the αcrit

Z obtained from ED with κ = 0 and
w = 0, taken from Ref. [41]. The experimental values for
αcrit

Z are significantly lower than the ED values, but in
reasonably good agreement with our DMC results.

The corrections due to LL mixing enter in a more dra-
matic manner when one compares the spin transitions be-
tween the filling factor regions 0 < ν < 1 and 1 < ν < 2.
Experiments have found (see Fig. 3 of Ref. 40) that the
αcrit

Z ’s for the latter are significantly higher than those for
the former. As noted above, the difference arises from,
and thus is a measure of, the breaking of the particle-hole
symmetry by LL mixing. To address this issue, we find
it most convenient (for reasons of computational cost) to
study the spin transitions at ν = 2/3 and ν = 4/3. To
obtain accurate results, we use for our ψT the exact κ = 0
Coulomb wave functions for the SS states at 2/3 and 4/3,
Eq. 2 for 2/3 FP state, and Φ1↑Ψ1/3↓ for the 4/3 PP state.
For SS states, we can only calculate for small systems as
the exact states contain a large number of Slater deter-
minants. Fig. 3 shows the αcrit

Z for ν = 4/3 (green circle)
and ν = 2/3 (blue square) obtained from the extrapola-
tion Method II. The value of αcrit

Z at κ = 0 is approxi-
mately consistent with the exact value 0.0175 [41], giving
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FIG. 2. (Color online) Comparison between experimental val-
ues (stars) and theoretical DMC values (empty circles) of
αcrit
Z = Ecrit

Z /(e2/ε`) for a w = 65nm quantum well (blue)
from Liu et al. [40], and heterojunctions (red) from Engel et
al.[30] and Kang et al.[32]. (For the experiment of Kang et
al., we estimate the value of the Landé factor g0 by assuming
that it changes linearly and passes through zero at a pressure
of roughly 18 Kbar [62].) The filling factors ν = n/(2n+1) are
shown on top and 1/n at the bottom. The black circles show
the results obtained from exact-diagonalization (ED) without
including any LL mixing or finite-width corrections [41] (these
do not involve DMC calculation). The results for 65nm quan-
tum well are shifted down by 0.005 for ease of depiction. The
dashed lines are a guide to the eye. For heterojunction, some
other experimental values (theoretical predictions) of αcrit

Z are
0.0109 [0.0076(4)] [29] and 0.0078 [0.0065(4)] [30] at ν = 2/3,
and 0.0081[0.0080(20)] [30] at ν = 3/5; these are not shown
on the figure to avoid clutter.

ν
d(αcrit

Z )/dκ
perturbative non-perturbative (DMC)

2/5 -0.0023 -0.0043
3/7 -0.0025 -0.0050
2/3 -0.0135 -0.0057
4/3 0.0339 0.0184

TABLE I. This table compares the values of d(αcrit
Z )/dκ

at κ = 0 obtained from the perturbative and the non-
perturbative DMC calculations.

us confidence in our calculated αcrit
Z with relatively small

system sizes. The main message of Fig. 3 is that the
αcrit

Z at 4/3 is substantially higher than that at 2/3 for
the typical experimental value of κ ≈ 1−2. Note that we
only show the zero-width results, because the extrapola-
tion of finite-width results to thermodynamic limit has a
poor statistics for such small systems [47]. We also show
in Fig. 3 the experimental data from GaAs-AlxGa1−xAs
heterojunction samples, because these have the smallest
effective width, with solid symbols for ν = 2/3 (light
blue) and ν = 4/3 (green). The agreement with the
w = 0 results is very good, which is not surprising be-
cause we know from Fig. 1 that at relatively large κ
(& 2), αcrit

Z is not very sensitive to the width w.
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FIG. 3. (Color online) Theoretical critical Zeeman energies
for w = 0 model as a function of the LL mixing parame-
ter κ obtained from the DMC method for ν = 4/3 (green
circle), 2/3 (blue square), 4/9 (magenta downward triangle),
3/7 (black upward triangle), and 2/5 (red diamond). For the
fractions n/(2n+ 1), the wave functions of Eq. 2 are used to
fix the phase. For ν = 2/3 and ν = 4/3 the exact Coulomb
state in the LLL is used to fix the phase of the wave function.
The solid lines are an approximate guide to the eye. The filled
symbols indicate the experimental data from heterojunction
samples at ν = 2/3 (light blue) and 4/3 (green), taken from
Eisenstein et al. [29] (circle), Engel et al. [30] (diamond), and
Du et al.[31] (rightward triangle).

It is natural to ask how well our results agree with those
obtained from the perturbative approach in which the
effect of LL mixing is incorporated within the LLL the-
ory through an effective interaction, which contains per-
turbative corrections to the two-body interaction, and,
minimally, also a three body interaction (because the
two-body interaction does not break particle-hole sym-
metry). We discuss this issue for w = 0. As seen in Fig.
3, the perturbation theory is in principle valid for up to
κ ≈ 1 for the states n/(2n ± 1), and up to κ ≈ 0.5 for
the states at 2−n/(2n±1). In practice, one cannot keep
all 2-body, 3-body and n-body terms in the calculation.
We have evaluated αcrit

Z [47] using the interaction given
by Peterson and Nayak[8], including corrections to the 2-

body pseudopotentials V
(2)
m for m ≤ 5 and 3-body pseu-

dopotentials V
(3)
m for m ≤ 3. Table I compares the per-

turbative d(αcrit
Z )/dκ with that deduced from Fig. 3 at

small κ. The two results are substantially different. For
example, if the perturbative result is applied to κ = 1.5,
it would produce αcrit

Z ∼ 0.068 and −0.003 for ν = 4/3
and 2/3, respectively, to be compared to the DMC values
of αcrit

Z ∼ 0.027 and 0.012. An exhaustive study of the
quantitative importance of the terms left out in the per-
turbative study is outside the scope of the current study.

To conclude, we find that LL mixing substantially sup-
presses the critical Zeeman energies for the ν = n

2n±1
FQH states, and brings theory into satisfactory agree-
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ment with experiment. We also find that LL mixing
causes an enhancement of the critical Zeeman energy for
ν = 2− n

2n±1 , as also seen experimentally. In addition to
providing an accurate quantitative comparison between
FQH theory and experiment, our work shows how the
quantitative study of the spin physics can shed funda-
mental light on the role of LL mixing in breaking the
particle-hole symmetry of the lowest LL.
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