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We develop an effective field theory (EFT) to describe the few- and many-body propagation of
one dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg
medium can be found by mapping the propagation problem to a non-equilibrium quench, where the
role of time and space are reversed. We include effective range corrections in the EFT and show
that they dominate the dynamics near scattering resonances in the presence of deep bound states.
Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong
effective N -body interactions between Rydberg polaritons. These results pave the way towards
studying non-perturbative effects in quantum field theories using Rydberg polaritons.

Photons can be made to strongly interact by dress-
ing them with atomic Rydberg states under conditions
of electromagnetic induced transparency (EIT) [1–3].
Probing such Rydberg polaritons in the few-body limit,
recent experiments were able to observe non-perturbative
effects including the formation of bound states [4], single-
photon blockade [5–7] and transistors [8–10], and two-
photon phase gates [11]. Theoretical work on quantum
nonlinear optics with Rydberg polaritons has focused on
two-body effects or dilute systems [2–5, 12–17]; however,
these theoretical methods often fail in dense systems with
more than two photons.

Effective field theory (EFT) aims to describe low en-
ergy physics without resorting to a microscopic model at
short distances or high energies [18]. In few-body sys-
tems, it is a useful approach to describe particle scat-
tering and bound states when the momentum k involved
is much less than the inverse range of the interactions
[18, 19] At the two-body level, the EFT depends only
on the scattering length a. For scattering at momenta
ka � 1, one can solve the EFT perturbatively [19, 20].
However, describing unitarity (a→ ±∞) or bound states
requires inclusion of all orders in perturbation theory,
which can be re-summed, provided the EFT parameters
are properly renormalized [21, 22].

In this Letter, we develop an EFT to describe the
few- and many-body transmission of photons through a
dispersive, one dimensional Rydberg polariton medium.
We first consider the renormalized theory, which depends
only on the local two-body scattering length, the effec-
tive mass, and the group velocity of the Rydberg po-
laritons. By switching the role of time and space in
the Lagrangian, we map the transmission problem to
a non-equilibrium quench, which greatly simplifies the
description of the dynamics. We then consider correc-
tions to the EFT arising from the long range nature
of the Rydberg interactions and the corrections to the
massive dispersion. We evaluate the so-called “effective
range corrections” to the EFT and show that they domi-
nate the dynamics near unitarity in the presence of deep

bound states. We then find the non-perturbative solution
for the many-body Rydberg polariton problem at large
momenta. Integrating out this momentum scale leads
to strong N -body interactions, which appear as contact
forces in the EFT.

A schematic of a Rydberg polariton transmission ex-
periment is shown in Fig. 1(a) [14]. A spatially inhomo-
geneous atomic cloud is probed with a classical control
field, with frequency ωc and Rabi frequency Ω, and a
few-photon probe beam focused into a 1d channel. The
control and probe beams are configured for EIT on a two-
photon resonance from the ground state |g〉 to a Rydberg
state |s〉 via an intermediate state |p〉. We analyze the
dispersive limit where the detuning of the control field
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FIG. 1: (a) Rydberg polariton transmission experiment: an
atomic cloud is probed with a few-photon beam, focused into
a 1d channel, and a classical control field. Under dispersive
conditions, the total energy ~ν and number N of probe pho-
tons are conserved. (b) Interaction potential V (r) = C6/r

6

for two 100S1/2 Rydberg states in 87Rb. The range is given
by the blockade radius rb. (Inset) Level diagram of an in-
teracting atom for different r. (c) Dimensionless density
n(z)/n(0) = exp(−z2/2σ2

ax) and inverse scattering length
rb/a(z) for σax = 36 µm, rb = 18 µm, OD = 25, Ω/2π =
5 MHz, and ∆/2π = 20 MHz.
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∆ = ωps − ωc is much greater than the p-state halfwidth
γ; here ωab is the atomic transition frequency from |a〉
to |b〉. For large enough atomic density n(z), the probe
photons transform into Rydberg polaritons upon entering
the medium because the collective, single-photon Rabi
frequency of the probe gc(z) = [6πγ c3n(z)/ω2

gp]
1/2 is

much greater than Ω [23]. We use the dimensionless mea-
sure of the density given by the resonant optical depth
OD =

∫
dz[gc(z)]

2/2γc.
Consider two Rydberg atoms interacting through the

van der Waals potential V (r) = C6/r
6. This interaction

is strong enough that a single Rydberg excitation modi-
fies the optical response over a region large compared to
the optical wavelength (see Fig. 1(b) and inset). The size
of this region is given by the blockade radius rb, defined
by the condition that V (rb) is equal to the off-resonant
EIT linewidth 2Ω2/|∆| [14, 24].

To see how these effects lead to strong photon-photon
interactions, one can use a gedanken experiment where
one photon (polariton) is held at fixed position z, then
any photon that passes by will pick up a nonlinear phase
shift ϕ(z) ≈ [gc(z)]

2rb/c∆; here we assume gc(z) varies
slowly over rb. For atomic densities achievable with laser-
cooled atoms (n & 1012 cm−3), this nonlinear phase
shift can be a sizable fraction of π [4]. An alterna-
tive metric is the two-body scattering length a, which
was mapped out for Rydberg polaritons in a uniform
medium in Ref. [12]. For an inhomogeneous medium, we
can similarly define a local scattering length a(z). For
small ϕ(z), these two metrics are closely related because
a(z) ≈ (3/π)rb/[ϕ(z)]2. We show in the supplemental
material that a(z) is well defined when the density varies
slowly over rb [25]. Figure 1(c) shows a(z) calculated
for a Gaussian density profile with parameters similar to
recent experiments [4].

In the absence of interactions, the propagation of Ry-
dberg polaritons is captured by the local EIT dispersion
relation [23, 25]

q(ω, z) =
ω

c

(
1 +

[gc(z)]
2

Ω2 − ω(∆ + ω)

)
, (1)

where ω = ω` − ω0 is the detuning of the probe fre-
quency ω` from the two-photon resonance ω0 = ωgs−ωc.
The electric field of the probe evolves as E(ω, z) =
E(ω, z0) exp

[
iω0(z − z0)/c+ i

∫ z
z0
dz′q(ω, z′)

]
. For a suf-

ficiently slowly varying density, we can define a local
group velocity vg(z) = c/(1 + [gc(z)]

2/Ω2) and mass
m(z) = −~Ω2/2∆[vg(z)]

2 by solving Eq. (1) for ω and
expanding near q = 0: ω ≈ vg(z)q + ~q2/2m(z) [23, 26].

For non-relativistic bosons in 1d, the only interaction
term that is relevant under renormalization is the two-
body contact interaction [21]. As a result, the renormal-
ized Lagrangian density for Rydberg polaritons is

L = ψ̂†
[
i~∂t − i~vg(z)∂z −

~2∂2
z

2m(z)

]
ψ̂ − ~2ψ̂†2ψ̂2

m(z)a(z)
, (2)

where [ψ̂(t, z), ψ̂†(t, z′)] = δ(z − z′) and ψ̂ is a single
component field because there is only a single polariton
branch near the two-photon resonance [25]. Outside the

medium, ψ̂ is the quantum field for the probe photons,
while inside it corresponds to the Rydberg polariton field.
The scaling of the contact interaction as 1/a is the uni-
versal behavior for bosons in 1d, in contrast to higher
dimensions where it scales as a [27].

Despite its relative simplicity compared to the micro-
scopic model [25], the theory is still difficult to solve be-
cause it has z-dependent parameters combined with sec-
ond derivatives in z. To overcome this we define a new
EFT with time and space exchanged via the local trans-
formation (t, z)→ (z/vg(z), tvg(z)). Similar transforma-
tions have been used to study propagation of quantum
light in nonlinear optical fibers [28, 29]. For the steady
state transmission with a uniform density, this transfor-
mation is equivalent to the rotated boundary conditions
used in Ref. [4]. The resulting EFT is

L = ψ̂†
[
i~vg(z)∂z − i~∂t −

~2∂2
t

2m(z)[vg(z)]2

]
ψ̂

− ~2ψ̂†2ψ̂2

m(z)a(z)vg(z)
,

(3)

where [ψ̂(z, t), ψ̂†(z, t′)] = δ(t − t′). Up to higher order
derivatives in t (which can be neglected under renormal-
ization), Eq. (3) is equivalent to Eq. (2); however, the sec-
ond derivative is now in t rather than z, which makes it
easier to account for the z-dependence of the parameters.
In particular, Eq. (3) gives rise to propagation equations
akin to a time-dependent Schrödinger equation

−i~vg(z)∂zψ̂(z, t) =

∫
dt′[H(z, t′), ψ̂(z, t)], (4)

where H(z, t) is given by the last three terms in Eq. (3).
In the dispersive regime, this propagation equation con-
serves the total photon number N , which simplifies the
transmission problem.

Benchmarking the EFT.—We now compare the pre-
dictions of the renormalized EFT for the two-photon
transmission through a finite Rydberg medium with nu-
merical simulations [5] of the exact wavefunction prop-
agation. We decompose the two-photon wavefunction
at the exit of the medium (z = L) as ψ(L, t1, t2) =√
g(2)(τ)eiφ2(τ)+i2φ1 , where t1(2) are the time coordinates

of the two photons and τ = t1 − t2 is the relative time.
The probability density g(2)(τ) can be measured in two-
photon coincidence measurements of the output light for
a weak coherent state input [5], while the nonlinear phase
φ2(τ) is defined relative to phase of the non-interacting
medium with a single-photon phase shift φ1 [4].

The results are shown in Fig. 2 for a representative
set of parameters similar to Ref. [4]. We take a steady-
state probe input on two-photon resonance (ω = 0) with



3

0 5 10 15−0.1

−0.05

0

0.05

τ /τd

Ph
as

e 
(R

ad
)

 

 

Simulation
EFT: Non−uniform density
EFT: Uniform density

�
(⌧

)

Simulation
 Non-uniform density
Uniform density
⌧/⌧d5 10 150

�0.1

�0.05

0

0.05

�
2
(⌧

)

0.9

1

1.1

1.2
A
m
pl
itu
de

0.9

1

1.1

1.2
g
(2

)
(⌧

)

⌧/⌧d5 10 150

(b)(a)

FIG. 2: (a) Photon correlation function g(2)(τ) and (b) phase
φ2(τ) (in radians) of transmitted two-photon state calculated
using EFT (solid lines) and numerical simulations (circles).
We took Ω/2π = 5 MHz, ∆/2π = 20 MHz, rb = 10 µm,
OD = 10, σax = 36 µm, L = 4σax, and L′ = 2.5σax. To aid
comparison we neglect decay from the |p〉 and |s〉 states.

a Gaussian density profile n(z) ∝ exp[−(z − L/2)2/2σ2
ax]

with a cutoff at the entrance to (z = 0) and exit from
(z = L) the medium. We compare g(2)(τ) and φ2(τ)
found with three different methods: numerical simula-
tions, EFT with no free parameters, and EFT with a uni-
form density with gc a free parameter and medium length

L′ chosen to match the time delay τd =
∫ L

0
dz[1/vg(z)].

For an intermediate time window, we see that both
EFT results capture many of the qualitative features of
the simulations, but the inhomogeneous EFT captures
more features and obtains better quantitative agreement.
We can understand the deviations at long and short times
as follows. The long-time deviations arise because the
EFT has a low momentum cutoff associated with spatial
variations in the density profile [25]. For a Gaussian or
uniform density profile, this scale is given by 1/L, with
the associated low-frequency cutoff 1/τd. The short-time
deviations arise from corrections to the EFT associated
with: our use of a massive polariton dispersion, the swap
of time and space, and the finite interaction range. The
first two effects contribute on timescales shorter than
τm ≈ max(∆/Ω2, 1/∆), while the effect of the finite inter-
action range appears on timescales less than rb/vg. For
the parameters in Fig. (2), rb/vg, τm � τd, which is con-
sistent with the good agreement we find at intermediate
times rb/vg, τm . τ . τd.

In related work, we have shown that this renormalized
EFT also gives good agreement with numerical simula-
tions of the three-photon transmission [30]. Yet, for in-
creasing N , simulations of the full transmission become
intractable and it is natural to ask: what are the lead-
ing corrections to the theory? In the framework of EFT,
these corrections can be found systematically by evaluat-
ing higher order corrections in krb. We show below that
the terms in this expansion arise from two intertwined
effects: (i) the finite range of the interactions and (ii) de-
viations of the dispersion from that of a massive particle.

Effective range corrections.—A standard approach to
include finite range effects for massive particles is through
the effective range expansion. In this treatment, higher

order corrections to the scattering phase shift δ(k) are
taken into account [19]. For bosons in 1d, the expansion
takes the form [31]

k tan δ(k) =
1

a
+
r0k

2

2
+ . . . , (5)

where r0 is the so-called “effective range” parameter.
These corrections can be included in the EFT by adding
terms to the Lagrangian that contain higher derivatives
in ψ̂, e.g., (after switching time and space)

L → L+ C2 ψ̂
†(∂tψ̂

†)(∂tψ̂)ψ̂, (6)

where C2 = ~2r0/2mv
3
g is fixed by Eq. (5) [32]. Including

these terms extends the validity of the EFT to higher po-
lariton densities. Most notably, this approach allows one
to study unitarity in the presence of deep bound states,
which occur when ϕ � 1. In this regime, we can solve
for a and r0 analytically [33, 34], and we find that the
two-body contact vanishes near a scattering resonance,
but r0 ≈ 1.39

√
ϕ rb remains finite [25].

Scattering resonances associated with the appearance
of additional two-body bound states can be achieved for
Rydberg polaritons at sufficiently high atomic density
[12]. Current experiments, however, are limited to den-
sities such that only a single two-body bound state is
present. In this case, we find r0 ≈ (2/3)r2

b/a and these
corrections are suppressed. We now show that the dom-
inant corrections to the theory in this regime arise from
effective 3-body interactions.
N -body interactions.—The strong long-range Rydberg

interactions that result in blockade are also expected to
induce large effective N -body interactions [35, 36]. This
is illustrated at the three-body level because, when two
polaritons are less than rb from a Rydberg atom, they
do not interact with each other. As a result, one expects
a three-body force of the same magnitude and opposite
sign as the two-body force.

More formally, effective N -body interactions emerge
from integrating out virtual processes with high energy
or large momenta. In the case of Rydberg polaritons,
this can be done in a surprisingly straightforward man-
ner because the theory dramatically simplifies at large
momenta. In particular, the single-body propagator for
the Rydberg polaritons projected onto the s-states gss0
saturates to a constant (see supplemental material [25])

lim
q→∞

~gss0 (q, ν) = ~χ(ν) =
(∆ + ν)

(∆ + ν)ν − Ω2
, (7)

for momentum q � 1/vgτm. The physical origin of
this can be seen in Eq. (1), where the local momen-
tum q(ω, z) diverges at the Raman resonance conditions
Ω2 − ω(∆ + ω) = 0. These Raman excitations have a
frequency close to two-photon resonance and effectively
infinite mass; therefore, near ν = 0, they dominate vir-
tual processes with large internal momentum. In the con-
text of EFT, these effects can be included by adding two
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FIG. 3: Examples of a (a) connected and (b) disconnected
scattering diagram for N = 5. The diagram in (a) con-
tributes to V N

eff , while (b) does not. (c,d) Graph represen-
tations of (a,b), respectively, neglecting the ordering of scat-
tering events. The graph in (c) is a tree graph, which implies
that (a) is a lowest order diagram for V N

eff . (e) Cut of the non-
perturbative solution for V N

eff in units of χ−1
N up to N = 4.

fictitious, infinitely massive particles to the theory associ-
ated with the Raman resonances [25]. Due to their high-
energy, the Rydberg interactions can only excite these
“particles” virtually. Integrating them out of the theory
results in effective N -body interactions for the ψ̂ field.

The associated N -body interaction potential V Neff can
be found by accounting for all of the virtual processes
where N of these fictitious particles exchange momen-
tum. These contributions to the scattering amplitudes
are represented by connected diagrams of the type shown
in Fig. 3(a), where the particles cannot be broken into
disjoint clusters. Particles are connected by two-body in-
teractions (curly lines), with the insertion of the N -body
propagator in between (vertical lines). Figure 3(b) shows
an example of a disconnected diagram, which is separa-
ble into two disjoint clusters (12) and (345) and does not
contribute to V Neff .

Integral equations for the connected contributions to
multi-particle scattering amplitudes were first formulated
by Weinberg [37] and Rosenberg [38]. The full integral
equations have only been solved for N ≤ 4 [39]; however,
the problem is simplified for the constant (i.e., momen-
tum independent) propagator described above. The local
nature of the propagator implies that the ordering of the
scattering events is irrelevant. In this limit, we can repre-
sent any scattering diagram by a graph of the type shown
in Fig. 3(c,d), where the vertices represent particles and
the edges indicate interaction pairs. Diagrams that map
to a tree graph (e.g., Fig. 3(a,c)) give the lowest order
contribution to V Neff :

V Neff (z; ν) ≈ (N−1)![χN (ν)]N−2
∑

T (N,E)

VE1
...VEN−1

, (8)

where Ek = (ik, jk) denotes a particle pair, VEk
=

V (zik − zjk), and the sum is over all labeled tree
graphs T (N,E) with N vertices and N − 1 edges
E = {E1, ... , EN−1}. Here the N -body propagator is
~χN (ν) = ~2

∫
dωχ(ω)χN−1(ν − ω) ≈ (ν −NΩ2/∆)−1

(for Ω � ∆). If r � rb, then |V (r)χN | > 1, and the
perturbative approach of Eq. (8) is no longer valid. We
derive the non-perturbative solution for V Neff in the sup-
plemental material [25]. Figure 3(e) shows a cut of this
solution up to N = 4. Consistent with the blockade ef-
fects described above, we see that V 3

eff has the opposite
sign from V 2

eff . More generally, we find V Neff alternates
with N between attraction and repulsion [25].

During low-momenta processes kr0 � 1, the polari-
tons hardly probe the blockaded region of the potential.
In this case, we can replace V (r) with the renormalized
interaction U(r) = −(2~2/ma)δ(r) and apply the pertur-
bative result from Eq. (8) to find the N -body interactions
[40]. After switching time and space, the resulting EFT
is governed by Eq. (4) with the Hamiltonian density

H = ψ̂†
[
− i~∂t −

~2∂2
t

2mv2
g

]
ψ̂ +

∑
N

hN ψ̂
†N ψ̂N , (9)

hN =
(−1)N−1

N

(
2~2

mavg

)N−1

(NχN )N−2, (10)

where the two-body interaction h2 is the same as in
Eq. (3) and we used Cayley’s tree formula NN−2 for the
number of labeled tree graphs with N vertices in eval-
uating Eq. (8) [41]. Using approximate expressions for
a near a scattering resonance [25], we find the generic
scaling hN ∼ (rb/a)N−1.

To determine the importance of the N -body interac-
tions for non-perturbative effects in the EFT, hN should
be compared with the effective range corrections at the
momentum scale k ∼ 1/a. For large ϕ, r0 ∼ rb and,
from Eq. (6), we see that the effective range corrections
contribute at the same order as h3 ∼ r2

b/a
2. On the

other hand, for ϕ� 1, r0 is suppressed by an additional
power of rb/a and the effective range corrections scale
as h4 ∼ r3

b/a
3. Thus, for weak interactions, we find the

surprising result that the 3-body force dominates the cor-
rections to the theory for all momentum scales k . 1/a.

The nature of these corrections has important impli-
cations for the propagation dynamics of 1d Rydberg po-
laritons. The largest corrections to the theory will de-
termine the deviations from the universal predictions for
the shallow bound state clusters when a > 0 [42], as well
as deviations from the repulsive Lieb-Liniger model when
a < 0 [43]. In addition, all these corrections generically
break the integrability of the EFT and, thus, determine
the long time dynamics of the system [44, 45].

Conclusion.—We developed an EFT to describe the
few- and many-body propagation of 1d Rydberg polari-
tons. The broad applicability of EFT to describe these
systems opens a new perspective on the design of ex-
periments aimed at probing non-perturbative effects in
quantum field theories using Rydberg polaritons. In par-
ticular, Rydberg polariton experiments can involve com-
plex geometries [46] or more Rydberg levels [11], dimen-
sions [47], and external control fields [48]. The theoret-
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ical methods developed here can be naturally extended
to these more complex configurations. For example, us-
ing additional control fields or atomic levels to modify
χN (ν) would allow precise control over the range and
strength of the N -body potentials. This could be used
to realize exotic situations where, e.g., a single M -body
force dominates over all N -body forces with N 6= M . As
another example, accounting for light diffraction intro-
duces 3d effects, where EFT predicts the emergence of
an Efimov effect in the vicinity of a scattering resonance
[19, 49]. Further extending these theoretical methods to
include dissipative interactions of the type demonstrated
in Ref. [5] may uncover new universality classes for few-
body physics, as well as new phases of non-equilibrium,
strongly-correlated light and matter.

Note added.—During completion of this work, we be-
came aware of related work on the three-body problem
for Rydberg polaritons [50].
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[35] H. P. Büchler, A. Micheli, and P. Zoller, Nat Phys 3, 726

(2007).
[36] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and
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