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We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity
and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the
impurity is non-interacting and the final state is strongly interacting with the host atoms. We compare results of
different theoretical approaches including a single excitation expansion, a self-consistent T-matrix method, and
a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable
states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of
many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly
used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong
fluctuations lead to a broad, incoherent absorption spectrum where no quasi-particle peak can be assigned.

Understanding the role of few-body correlations in many-
body systems is a challenging problem that arises in many
areas of physics. Few particle systems can be studied us-
ing powerful techniques of scattering theory such as Fad-
deev equations, hyperspherical formalism, or effective field
theory [1–5]. These approaches have been successfully ap-
plied to investigate collisions of hadrons [6, 7] and Efimov
resonances in ultracold atoms [8, 9]. On the other hand the
common approach to interacting many-body systems is to use
the mean-field approximation, which reduces a many-body
problem to an effective single particle Hamiltonian with self-
consistently determined fields. While this approach provides a
good description of many fundamental states, including mag-
netic, superconducting, and superfluid phases [10], in many
cases it is important to go beyond the mean-field paradigm
and include correlations at a few particle level. Recent notable
examples include 4e pairing in high-Tc superconductors [11],
spin nematic states [12], chains and clusters of molecules in
ultracold atoms [13–16], and the QCD phase diagram in high-
energy physics [17, 18]. A particularly important class of
problems where few-body correlations play a crucial role is
the formation of quasiparticles and polarons. The key feature
of both is the dramatic change in the particle dynamics due
to the interaction with collective excitations of the many-body
system. Famous examples include lattice polarons in semi-
conductors [19, 20], magnetic polarons in strongly correlated
systems [21–23], and 3He atoms in superfluid 4He [24].

Recent experiments with ultracold atoms opened a new
chapter in the study of polaronic physics [25–56, 61]. These
systems have tunable interactions between impurity and host
atoms [57] and powerful experimental techniques for charac-
terizing many-body states include spectroscopy [27, 30–32],
Ramsey interferometry [36], time of flight experiments [37],
and in-situ measurements with single atom resolution [35, 58].

In this paper we explore the dynamics of Bose polarons
in the specific setting of radio-frequency (RF) spectroscopy
of impurity atoms immersed in a Bose-Einstein condensate
(BEC). The most striking finding of our study is the break-
down of the polaron quasiparticle picture close to the reso-
nance (see Fig. 1). This is the result of the interplay between
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Figure 1. Absorption spectra A(ω) of a single impurity immersed in
a BEC as a function of the inverse interaction strength 1/(n1/3aIB).
The polaron (4) and bound state (7) energies are shown as solid and
dashed lines. For 1/(n1/3aIB) � 1 the energy of the first bound state
approaches the dimer binding energy (dash-dotted line). The spec-
trum is shown for a momentum cutoff Λn−1/3 = 20, Bose scattering
length aBBn1/3 = 0.05, and mass-balanced system mI = mB.

few- and many-body correlations which also manifest them-
selves as the appearance of sharp spectral lines arising from
states of several Bogoliubov quasiparticles bound to the im-
purity atom. Both effects can be contrasted to earlier theo-
retical studies that predicted a smooth crossover from an at-
tractive polaron to a molecular state [54, 59, 60, 62–65]. This
interplay can not be studied in the commonly used Fröhlich
model [19] because the latter does not include two particle
scattering processes that results in the Feshbach resonance.

Model. – We consider an impurity of mass mI interact-
ing with a weakly interacting BEC of atoms of mass mB in
the vicinity of an inter-species Feshbach resonance. Within
the Bogoliubov approximation the system is described by the
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Hamiltonian [70]

Ĥ = gΛn +
P̂2

2mI
+

∑
k

ωkb̂†kb̂k +

gΛ

√
n

Ld/2

∑
k

WkeikR̂
(
b̂†k + b̂−k

)
+

gΛ

Ld

∑
kk′

V (1)
kk′e

i(k−k′)R̂b̂†kb̂k′

+
gΛ

Ld

∑
kk′

V (2)
kk′e

i(k+k′)R̂
(
b̂†kb̂†k′ + b̂−kb̂−k′

)
. (1)

Here the operators b†k create Bogoliubov quasiparticles
(‘phonons’) with momentum k and dispersion ωk. The bare
inter-species interaction is given by gΛ. Furthermore Wk =
√
εk/ωk, V (1)

kk′ ± V (2)
kk′ = (WkWk′ )±1, and εk = k2/2mB is the

boson’s dispersion relation; n is the condensate density, and
Ld the system’s volume.

The last two lines in Eq. (1) describe the interaction of the
impurity at position R̂ and momentum P̂ with the host bosons.
In the Fröhlich model only the interaction term linear in the
bosonic operators is present and it describes the creation of
excitations directly from the BEC. However, a microscopic
derivation reveals that in cold atomic systems also the addi-
tional quadratic terms, included in Eq. (1), are present which
lead to rich physics beyond the Fröhlich paradigm [59].

The extended Hamiltonian (1) allows for a proper regular-
ization of the contact interaction between the impurity and
bosons. From the solution of the two-body scattering prob-
lem of Eq. (1) follows the relation of gΛ to the impurity-boson
scattering length aIB by the Lippmann-Schwinger equation

g−1
Λ =

µred

2π
a−1

IB −
1
Ld

Λ∑
k

2µred

k2 . (2)

Here µred = mImB/(mI + mB) is the reduced mass and Λ ∼

1/r0 denotes an ultraviolet (UV) cutoff scale related to a finite
range r0 of the interaction potential. In the limit Λ → ∞

contact interactions are recovered.
We describe the impurity-bath system in the frame co-

moving with the polaronic quasiparticle [68]. This is achieved
using a canonical transformation Ĥ = Ŝ −1ĤŜ with Ŝ = eiR̂P̂B

where P̂B =
∑

k kb̂†kb̂k is the total momentum operator of
the bosons. After the transformation sectors with different
total system momentum P are decoupled in the Hamilto-
nian Ĥ . The bosons now interact with each other since the
impurity kinetic energy transforms according to P̂2/2M →

(P̂ − P̂B)2/2M [56, 69], for details see [70].
Quantum quench dynamics. – In this work we predict

the excitation spectrum of Eq. (1). In experiments the spec-
trum can be explored using ‘inverse’ RF spectroscopy where
the impurity is driven from a state non-interacting with the
BEC to an interacting one. Within linear response the absorp-
tion spectrum is given by A(ω) = 2 Re

∫ ∞
0 dteiωtS (t), where

S (t) = 〈Ψ(0)| e−iĤt |Ψ(0)〉 is a time-dependent overlap. Here
|Ψ(0)〉 denotes the initial state of the system and the overlap
S (t) describes the dynamics of the system after a quench of
the interactions between impurity and the bath. In real-time
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Figure 2. Ramsey contrast |S (t)| and impurity absorption spectra
A(ω) for fixed scattering lengths 1/(n1/3aIB). For negative scatter-
ing length, panel (a,b), the spectrum reveals the attractive polaron.
At unitarity, panel (c,d), the spectrum shows a broad spectral feature
and no quasi particle peak can be assigned. For positive scattering
lengths, panel (e-f), a series of bound states emerges. Away from the
resonance, panel (g-h), their binding energy increases while at posi-
tive frequencies a long-lived repulsive polaron becomes the dominant
excitation. As for Fig. 1 we broadened the spectrum to make sharp
features visible.

the overlap S (t) can be measured using Ramsey interferome-
try [71, 72].

In order to predict the real-time evolution as well as the ex-
citation spectrum of the system, we invoke the time-dependent
variational principle [73]. The approach relies on a projection
of the many-body wave function onto a submanifold of the
full Hilbert space spanned by a set of trial wave-functions.

Specifically, we employ a variational state in the form of a
product of coherent states [69]

|Ψcoh(t)〉 = e−iφ(t)e
∑

k βk(t)b†k−h.c. |0〉 (3)

where βk(t) are the coherent amplitudes, φ(t) is a global phase
which ensures energy conservation, and |0〉 denotes the vac-
uum of Bogoliubov quasiparticles. The ansatz (3) provides an
exact solution when describing the sudden immersion of an
impurity of infinite mass into a gas of non-interacting bosons.
As such the choice of the wave function is based on an ex-
act limit of the model which is valid for arbitrary interaction
strengths between the impurity and Bose gas.

We first calculate the polaron energy from the variation
of 〈Ψcoh| Ĥ |Ψcoh〉 which for P = 0 yields [70]

Epol =
2π
µred

n
a−1

IB − a−1
0

. (4)

Here a−1
0 = 2π

µred

∑
k
(
2µred/k2 −W2

k/(ωk + k2/2mI)
)

defines
the shift of the scattering resonance due to the many-body
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environment. Eq. (4) accounts for the regularization of the
short-range interaction as given by Eq. (2) and contains only
experimentally accessible parameters.

For the dynamics we treat the parameters βk(t) and φ(t) as
time dependent quantities. The equation of motions d

dt
∂L
∂β̇
−

∂L
∂β

= 0 are obtained from the Lagrangian L = 〈Ψcoh| i∂t −

Ĥ |Ψcoh〉,

iβ̇k = gΛ

√
nWk +

(
ωk +

k2

2mI
−

k
(
P − PB

[
βk

])
mI

)
βk

+
gΛ

2

Wk

∑
k′

Wk′
(
βk′ + β∗k′

)
+ W−1

k

∑
k′

W−1
k′

(
βk′ − β

∗
k′
)

φ̇(t) = gΛn +
1
2

gΛ

√
n
∑

k

Wk
(
βk + β∗k

)
+

P2 − P2
B
[
βk

]
2mI

. (5)

Here PB
[
βk

]
=

∑
k k |βk|

2 is the total phonon momentum and
gΛ is defined by Eq. (2) ensuring a time-evolution which is
fully regularized and free of any divergencies.

Dynamical overlap and absorption spectra.– In the class
of coherent states, Eq. (3), the dynamical overlap becomes
S (t) = 〈0 |Ψcoh(t)〉 = exp

[
−iφ(t) − 1

2
∑

k |βk(t)|2
]
. From its

Fourier transform we obtain the RF absorption spectrum,
shown in the right panels in Fig. 1, as function of 1/(n1/3aIB).

The spectrum exhibits two main excitation branches which
follow the energy, Eq. (4): the attractive polaron for aIB < 0
and the repulsive polaron for aIB > 0. The attractive polaron
is formed when the impurity is dressed by bosonic excitations
due to the weak attractive interactions with the bath. The cor-
responding spectral signature, shown in Fig. 2(b), is a sharp
quasiparticle peak at negative frequencies given by Eq. (4).
The emergence of the polaron is also reflected in the long-
time dynamics of the dynamical overlap |S (t)| approaching the
quasiparticle weight Z in Fig. 2(a).

As the Feshbach resonance at 1/(n1/3aIB) = 0 is approached
the attractive polaron peak looses spectral weight, Z → 0,
to the scattering continuum at higher frequencies. Close to
unitarity, no particular eigenstate of Ĥ yields a distinct con-
tribution to the dynamical overlap S (t), and many overlaps
between the eigenstates of the many-body Hamiltonian and
the non-interacting state of the system are of the same order.
Hence the spectrum becomes broad and no coherent quasi-
particle excitation is possible any longer. In consequence,
perturbative approaches based on expansions around the non-
interacting state become particularly unreliable in this strong
coupling regime.

For positive scattering length, 1/(n1/3aIB) > 0, the effective
interaction between the impurity and the bosons is repulsive
and leads to the formation of the repulsive polaron. This state
manifests itself as a quasiparticle peak at positive frequency
and correspondingly |S (t)| saturates at a finite value at long
times, see Fig. 2(g,h). As can be seen in Fig. 1, the energy
of the repulsive polaron increases as the shifted resonance at
aIB = a0 is approached, and it follows the saddle point pre-
diction Eq. (4). Similar to the attractive polaron, close to the

resonance, the repulsive polaron quickly looses quasiparticle
weight.

However, the spectral weight is transferred not only to inco-
herent excitations but also to coherent spectral features which
appear below the repulsive polaron branch. In Fig. 1 and
Fig. 2(f) those features are visible as a series of equidistant
peaks. Such excitations are absent in the Fröhlich model since
they are a consequence of strong pairing correlations originat-
ing from the quadratic interaction terms in Eq. (1). As unitar-
ity is approached, the spacing between these bound state peaks
decreases until they eventually cannot be resolved. Such a
crossover in the spectral profile from discrete bound states to
a broad distribution is reminiscent of superpolarons in Ryd-
berg molecular systems [66, 67].

Many-body bound states. – The emergence of the series
of bound states on the repulsive side of the resonance (1/aIB >
0) is a novel feature of impurities immersed in atomic BECs.
Each peak corresponds to a single, two, or more Bogoliubov
quasiparticles bound to the repulsive polaron.

The structure of the bound state spectrum can be under-
stood analytically. We consider a wave-function which ac-
counts for a single Bogoliubov excitation above the polaron
state

∣∣∣Ψpol

〉
[56, 70], which is a coherent state Eq. (3) with the

coefficients βk defined by the stationary solition of Eq. (5)∣∣∣Ψ′(t)〉 =
∑

k

γk(t)b̂†k
∣∣∣Ψpol

〉
. (6)

This ansatz can be regarded as a molecular wave-function
fully accounting for two-body bound state physics on top
of the repulsive polaron state

∣∣∣Ψpol

〉
. A calculation shows

that the equations of motion of this state have an eigenmode
γk(t) ∼ e−iνBt with eigenfrequency νB determined by the solu-
tion of the equation [70]

µred

2πaIB
−

∑
k


(
W2

k + W−2
k

)
/2

νB − Epol −Ωk
+

2µred

k2

 = 0 (7)

where Ωk = ωk + k2/2mI . In Fig. 1 we show the energy νB as
red dashed lines. Those occur in integer multiples of νB since
the bound state can be occupied by several phonons at the
same times, an effect taken into account by the exponentiated
creation operators in Eq. (3).

For a further understanding of these states we consider the
limit of the BEC density going to zero, ie. n → 0,

∣∣∣Ψpol

〉
→

|0〉, Wk → 1 and Ωk → k2/2µred. This limit defines the two-
body problem where, for zero-range interactions, the bound
state energy becomes εB = −~2/µreda2

IB [59], which is fully
recovered by Eq. (7). For any finite density of non-interacting
bosons, and assuming an infinitely heavy impurity, this bound
state can be occupied by arbitrarily many bosons, and each
bound atom contributes an energy εB. In an interacting Bose
gas, the infinitely massive impurity scatters with Bogoliubov
quasiparticles instead of bare bosons. As a consequence the
binding energy εB is modified. Since in the Bogoliubov model
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quasiparticles do not interact with each other, they can still oc-
cupy the bound state multiple times which leads to the series
of spectral lines visible in Fig. 2(c).

The emergence of the many-body bound states revealed in
our approach is related to the Efimov effect [8, 9, 74]. Indeed,
an exact solution of the corresponding three-body problem re-
veals that, as the infinite mass condition is relaxed, recoil leads
to the splitting of three-, four-, etc. body bound states into
an infinite series of bound states situated in a regime expo-
nentially close to the Feshbach resonance [75, 76]. Within
our approach this splitting is absent since the effective inter-
actions between phonons vanishes for the class of coherent
states Eq. (3). In consequence, in the limit of vanishing den-
sity, we effectively recover the Efimov physics of an infinitely
mass-imbalanced system, as discussed by Efimov in his sem-
inal work [75, 77].

Comparison to other approaches.– As can be seen from
the previous analysis, a simple ansatz such as Eq. (6) can al-
ready account for aspects of complex many-body physics. In-
deed, the ansatz (6) is related to a variational wave function
which is based on an expansion in terms of single particle ex-
citations, first introduced for fermionic systems [78], and later
generalized to bosons [52, 56, 59, 60].

Here we present an extension of this equilibrium approach
to real-time dynamics by studying the time-dependent varia-
tional wave-function

|Ψ1ex(t)〉 = α0(t) |0〉 +
∑

k

αk(t)b̂†k |0〉 (8)

This wave-function accounts for a single phonon excitation
on top of the unperturbed BEC state. We calculate the ex-
citation spectrum of the system from the dynamical overlap
S (t) = α0(t) obtained from the equation of motions. This
ansatz is connected to the coherent state approach as an ex-
pansion in low occupation numbers, which justifies the valid-
ity of Eq. (8) in the limit of low densities. While in the weak
coupling regime the ansatz (8) reproduces the predictions of
the coherent state approach, it fails to describe the intricate
many-body physics in regimes where multiple boson excita-
tions become relevant (for a detailed comparison see [70]).

The difference between the approach (3) and the single-
excitation expansion (8) can be highlighted when the time
evolution of the number of phonon excitations Nph =

〈
∑

k b̂†kb̂k〉 is compared. In Fig. 3 we show Nph(t) for attrac-
tive and repulsive interactions. On the attractive side both ap-
proaches predict a saturation of the phonon number in the long
time limit, see Fig. 3(a). In the single-excitation expansion
(dashed lines), the number of excitations is restricted to one.
This limitation becomes apparent when comparing to the co-
herent state approach (solid lines). We find that already for
moderate attractive coupling strengths the phonon number ex-
ceeds one. Hence, due to the restriction of Eq. (8) to single
excitations, both approaches agree only for short times.

On the repulsive side the coherent state approach predicts
oscillations of Nph in the long time limit, see Fig. 3(b). These

0 1 2 3 4 5
0.0

1.0

2.0

0.0

0.5

1.0

1.5

Ph
on

on
 n

um
be

r

t n2/3

(a)

(b)

1/(aIB n1/3) = - 2

1/(aIB n1/3)   =   4

Figure 3. Time evolution of the phonons number Nph for (a) attrac-
tive 1/(n1/3aIB) = −2 and (b) repulsive 1/(n1/3aIB) = 4 interactions,
obtained by the coherent state approach (3) and the single-excitation
expansion (8) (yellow solid and red dashed lines, respectively).

oscillations appear due to the competition between the many-
body polaron branch and the few-body bound states. In con-
trast, in the single-excitation expansion these oscillations de-
cay gradually, and in the long time limit the number of ex-
citations saturates at one, reflecting the formation of a single
molecular state.

Note, a self-consistent T-matrix approach [59] also ac-
counts for an infinite number of bosonic excitations. There it
has been found that the inclusion of multiple boson excitations
has a profound influence on the spectrum. However, as for the
ansatz (8) multiphonon bound states have not been observed
in this earlier work. Yet we emphasize that for short times dy-
namics or moderate interaction strengths, expansions in terms
of a few particle excitations remain a viable approach. They
correctly describe the weakly attractive and repulsive polaron
branches as well as the one-boson bound state present in the
spectrum sufficiently far away from the Feshbach resonance.

Summary and Outlook.– We analyzed the dynamics and
absorption spectra of an impurity immersed in a BEC. We
demonstrated both the disappearance of the sharp quasipar-
ticle spectral feature at strong coupling and the presence of a
novel type of excitations in which several Bogoliubov quasi-
particles are bound to the impurity. Our analysis highlights
the importance of quasiparticle scattering processes that are
not present in the commonly used Fröhlich model. They re-
sult in strong short distance correlations that give rise to multi-
particle bound states and play a crucial role in suppressing the
quasiparticle spectral weight close to the Feshbach resonance.
Our work opens new directions for studying non-perturbative
phenomena in Bose polarons at strong coupling. We expect
that new insight into such systems can be gained by extending
our analysis to Gaussian variational wave-function [55] and
Renormalization Group approach [49]. Our method can also
be extended to problems beyond linear response such as Rabi
oscillations of strongly driven impurities [31, 79].

Note added. After submission of the manuscript, the first
observation of Bose polarons has been reported [80, 81]. In
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these works absorption spectra were measured using the same
‘inverse’ RF protocol as put forward here. We added an ad-
ditional section to the supplementary material where we com-
pare our theory to the experimental data.
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boldt Foundation, Dr. Max Rössler, the Walter Haefner Foun-
dation, and the ETH Foundation. R. S. is supported by the
NSF through a grant for the Institute for Theoretical Atomic,
Molecular, and Optical Physics at Harvard University and the
Smithsonian Astrophysical Observatory. F. G. is grateful for
financial support from the Gordon and Betty Moore founda-
tion.

[1] R. T. Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987).
[2] D. V. Fedorov and A. S. Jensen, Phys. Rev. Lett. 71, 4103

(1993).
[3] C. Lin, Phys. Rep. 257, 1 (1995).
[4] E. Nielsen, D. Fedorov, A. Jensen, and E. Garrido, Phys. Rep.

347, 373 (2001).
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