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We propose and analyze a new approach based on parity-time (PT ) symmetric microcavities
with balanced gain and loss to enhance the performance of cavity-assisted metrology. We identify
the conditions under which PT -symmetric microcavities allow to improve sensitivity beyond what
is achievable in loss-only systems. We discuss the application of PT -symmetric microcavities to
the detection of mechanical motion, and show that the sensitivity is significantly enhanced near
the transition point from unbroken- to broken-PT regimes. Our results open a new direction for
PT -symmetric physical systems and it may find use in ultra-high precision metrology and sensing.

PACS numbers: 42.65.Yj, 06.30.Ft, 42.50.Wk

Introduction.— The measurement of physical quanti-
ties with high precision is the subject of metrology. This
has attracted much attention due to increasing interest
in, e.g., gravitational wave detection [1], sensing of nanos-
tructures [2, 3], global positioning and navigation [4, 5].
Developments in metrology over the past two decades
have provided necessary tools to determine the funda-
mental limits of measuring physical quantities and the
resources required to achieve them [6, 7]. Techniques
that will help to reach the fundamental detection limit
and measure very weak signals are being actively sought.

Among many different approaches, cavity-assisted
metrology (CAM), where a cavity or a resonator with
high-quality (Q) factor is coupled to a device under test
(DUT), has emerged as a versatile and efficient approach
for high-precision measurements. The coupling between
the resonator and the DUT manifests itself as a back-
action-induced frequency shift, mode splitting, or a side-
band in the output transmission spectrum [8]. CAM has
been applied for reading out the state of a qubit [9],
measuring tiny mechanical motions [10–16] and detect-
ing nanoparticles [17, 18].

The readout signal (i.e., the transmission spectrum)
of CAM is determined by the sum of the background
spectrum of the cavity and the back-action spectrum
of the DUT. The background spectrum is determined
by the Q of the cavity, whereas the back-action spec-
trum is determined by the strength of the cavity-DUT
coupling (also dependent on Q) and the quantity to be
measured. A broad background spectrum masks the

back-action spectrum and decreases the signal-to-noise
ratio (SNR) [Fig. 1(a)]. A higher cavity-DUT coupling
strength and a higher Q help to detect very weak sig-
nals, and enable to resolve fine structures in the output
spectra [Fig. 1(b)]. CAM will benefit significantly from
a narrower background spectrum which is limited by the
cavity losses.

In this Letter, we show that the performance of CAM
is significantly enhanced if the passive cavity (i.e., lossy;
without optical gain) of the CAM is coupled to an auxil-
iary cavity with optical gain (i.e., active cavity) that bal-
ances the loss of the passive cavity. Such coupled struc-
tures with balanced gain and loss form parity-time (PT )
symmetric systems [19], which have been widely studied
theoretically [20–29] and experimentally [30–38].

As a specific application of PT -CAM, we show the en-
hancement in the detection of the motion of a nanome-
chanical resonator placed in the proximity of the passive
microcavity of PT -CAM. The enhancement is significant
near the PT -phase transition point through which the
system transits from broken- to unbroken-PT symme-
try. The mechanism for the enhancement of the mea-
surement sensitivity in our system is attributed to two
features. First, due to gain-loss balance the supermodes
are almost lossless (extremely high-Q), and the back-
ground spectrum is much narrower. Thus, it is easier to
resolve the sideband induced by the DUT. Second, the
effective interaction strength between the optical modes
and the DUT is significantly enhanced. Therefore, even
very weak perturbations lead to significant changes in the
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spectrum and hence become detectable.

Cavity-assisted metrology (CAM) with PT -symmetric
microcavities.— The traditional CAM is composed of a
lossy optical cavity coupled to a DUT [Fig. 1(a)]. The
interaction Hamiltonian is given by Hint = ga†az, where
a is the cavity’s annihilation operator; z is the DUT’s
observable being measured; and g is the strength of the
DUT-cavity coupling. In order to realize the PT -CAM,
an active cavity is directly coupled to a lossy cavity
[Fig. 1(b)], similar to the configuration discussed in Ref.
[38], and the DUT is directly coupled to the lossy cav-
ity. Here the inter-cavity coupling strength is controlled
by the distance between the cavities, and the gain-to-loss
ratio of the cavities is adjusted by an electrical or optical
pump exciting the optical-gain providing material of the
active cavity. The Hamiltonian describing this PT -CAM
system is given by

H = (∆− iκ) a†a+(∆+ iγ) c†c+ ga†az+ g1(a
†c+ c†a),

(1)
where c is the annihilation operator of the active cavity; κ
and γ, respectively, denote the loss and gain rates of the
passive and active cavities; g1 is the inter-cavity coupling
strength; and ∆ corresponds to the effective frequencies
of the cavities.

Without the interaction term ga†az, Eq.(1) accounts
for the coupling between the optical modes of the mi-
crocavities, and leads to two supermodes a± that are
described with the complex eigenfrequencies ω± = Ω± −

iΓ± = ∆− iχ± β, where β =
√

g21 − Γ2, χ = (κ− γ)/2,
Γ = (γ + κ)/2; Ω± and Γ± denote, respectively, the fre-
quencies and the decay rates of the supermodes. Clearly,
β experiences a transition from a real to an imaginary
value and vice versa at Γ = g1, where β = 0. At the
transition point, the eigenfrequencies coalesce, that is
ω± = ∆− iχ.

For Γ < g1, β is real (denoted as β = βr), and the com-
plex eigenfrequencies become ω± = ∆±βr−iχ, implying
that two supermodes have different resonance frequencies
[Ω− 6= Ω+], but the same damping rates and linewidths
[Γ± = χ]. The separation of resonance frequencies (i.e.,
amount of mode splitting) is given by 2βr. For Γ > g1, on
the other hand, β is imaginary, (β = iβr), and the com-
plex eigenfrequencies become ω± = ∆− i(χ∓βr), imply-
ing two frequency-degenerate supermodes [Ω± = ∆] with
different damping rates and linewidths [Γ± = χ∓ βr].

When the gain γ of the active cavity balances the
loss κ of the passive cavity, β = 0 corresponds to a
PT -phase transition point, where the supermodes coa-
lesce, and χ becomes zero, implying lossless supermodes.
The regime defined by Γ < g1 corresponds to the PT -
symmetric phase, where the lossless supermodes are split
by 2βr. The regime defined by Γ > g1 denotes the bro-
ken PT -phase where the two supermodes have the same
frequency, while one of them is dissipating and the other
is amplifying.
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FIG. 1: (Color online) (a) Schematic diagram of a single
passive-cavity transducer. (b) PT -cavity-assisted transducer.
(c) Amplification factor A(g1, g) of the back-action spectrum
versus the normalized coupling strength g1/Γ. A(g1, g) in-
creases very sharply, reaching values as high as 1000, near
g1 = Γ. (d) Normalized background spectra Sa(ω) of a pas-
sive cavity (red dashed curve), an active cavity (purple dot-
ted curve), and the PT -symmetric cavities in the broken-
PT regime (blue curve) as well as the PT -symmetric regime
(green curve with circular symbals). DUT: Device under test.

Rewriting the Hamiltonian (1) in the supermode pic-
ture, we find the effective coupling strength between the
supermodes and the DUT as [39]

geff =
g
(

Γ +
√

Γ2 − g21

)

2
√

Γ2 − g21
. (2)

Clearly, near the transition point g1 = Γ, the effective
coupling strength geff is significantly larger than g, im-
plying a drastic enhancement in sensitivity. One can in-
tuitively explain the sensitivity enhancement as follows.
The active cavity of the PT system amplifies the back-
action spectrum of the DUT. The gain-loss balance in
the PT -symmetric system, on the other hand, makes the
background spectrum narrower. The combined effect of
these two increases the measurement sensitivity.
In the regime of weak coupling between the cavity and

the DUT, we can omit the back-action of the cavity on
the DUT. Then the normalized spectrum can be written
as [39]

S(ω) ≈ G(ω) [Sa(ω) +A(g1, g)Sz(ω)] . (3)

Here Sa(ω) is the single-cavity background spectrum cal-
culated by setting g1 = 0; Sz(ω) = F

[

f(t)F−1Szo(ω)
]
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is the back-action spectrum from the DUT, with Szo(ω)
representing the spectrum of the DUT; while F and F−1

are the Fourier and inverse-Fourier transforms, respec-
tively. The time-domain function f(t) is a form-factor
that broadens the back-action spectrum [39]. Equation
(3) implies that the interaction between the lossy cavity
and the DUT in the PT -system leads to an amplification
factor A(g1, g) acting on the back-action spectrum Sz(ω)
[Fig. 1(c)]. In the PT -breaking regime, as g1 increases,
A(g1, g) first increases slowly from a very small value and,
near the PT phase transition point, A(g1, g) increases
very sharply, reaching a very high value. When g1 is fur-
ther increased and the system enters the PT -symmetric
regime, the amplification factor A(g1, g) drops sharply,
to a small value, and continues decreasing with a very
slow rate as g1 is increased.

In Fig. 1(d) we show the background spectrum Sa(ω)
for a lossy cavity and a PT structure in the PT -
symmetric and the broken-PT -symmetric regimes. Due
to the presence of gain, the susceptibility coefficient G(ω)
reshapes Sa(ω), leading to a background spectrum which
is significantly narrower than that of a single lossy-cavity.
In the PT -symmetric regime, the background spectrum
is split into two due to the strong coupling between the
cavities, and the split resonances have linewidths nar-
rower than the resonance-linewidth of the single lossy-
cavity. Combining the narrower background spectrum
Sa(ω) of a PT structure with the high amplification fac-
tor near the PT -phase transition point leads to a signif-
icantly enhanced sensitivity for the CAM.

Optomechanical transducer by PT breaking.— Here-
after, we will discuss an optomechanical transducer op-
erated near the PT -phase transition point. We first con-
sider that the lossy cavity of the PT structure supports a
mechanical mode. The Hamiltonian of this PT optome-
chanical system is obtained from Eq. (1) by replacing
the operator z by (b + b†), where b is the annihilation
operator of the mechanical mode. We have obtained the
output spectrum [39] of this PT optomechanical system
in a form similar to Eq. (3), and compared it with the
single-cavity case in Fig. 2(b).

Next, let us consider a particular PT -symmetric op-
tomechanical transducer realized by two coupled res-
onators used to detect tiny motions of a mechanical
oscillator, e.g., a nanomechanical beam or cantilever,
via the optical evanescent field of the passive resonator
[Fig. 2(a)] [49]. In order to show the differences between
PT and a single-lossy-cavity optomechanics, we carried
out numerical simulations using experimentally accessi-
ble values of system parameters: ∆ = 0, ωm = 6 MHz,
κ = 20 MHz, γm = 0.2 MHz, γ = 16 MHz, g1 = 19.8
MHz, g = 5 MHz, where ωm and γm are the frequency
and the decay rate of the mechanical oscillator. Since
we have deliberately chosen the optomechanical coupling
strength g to be very small, the susceptibility coefficient
of the single-cavity optomechanical system is very small;
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FIG. 2: (Color online) (a) PT -symmetric optomechanical
transducer realized by two coupled microresonators, e.g., a
silica microtoroid (blue; passive) and a Er3+-doped silica mi-
crotoroid (red; active). The passive resonator is coupled to a
mechanical oscillator via the optical evanescent field. (b) The
normalized output spectra of optomechanical transducers for
ωm/κ = 0.3: single-cavity (red dashed curve), single-cavity
with gain (purple dot dashed curve), PT -system near the
PT -transition point (blue curve), and two-lossy-cavity system
near an exceptional point (green curve with star marks). (c)
The normalized displacement spectral densities Sxx,single(ωm),
Sxx,gain(ωm), Sxx,PT(ωm), and Sxx,EP(ωm) of the single pas-
sive cavity-optomechanical transducer (red curve), the sin-
gle active cavity-optomechanical transducer (purple dotted
curve), the PT -optomechanical transducer (blue curve), and
the two-lossy-cavity transducer (green curve with star sym-
bols) when ωm/κ = 0.3. The measurement sensitivity is
enhanced for at least two orders of magnitude by the PT

optomechanical transducer near the transition point, i.e.,
Sxx,PT(ωm)/Sxx,single(ωm) < 10−2.

thus the back-action spectrum of the mechanical oscilla-
tor is masked by the background spectrum of the cavity
[red dashed curve in Fig. 2(b)]. The output spectrum of
the PT -symmetric transducer [blue curve in Fig. 2(b)]
shows two distinct features originating from the gain-
loss balance and the one of the amplification mechanism.
First, the background spectrum is narrower and the reso-
nance dip located at ω/ωm = 0 is amplified. Second, the
back-action spectrum of the mechanical motion is clearly
seen as a sideband-dip sitting on the background spec-
trum at ω/ωm = 1. We also see the second-order mechan-
ical sideband as a smaller dip located 2ωm away from the
main dip. These confirm that the PT -symmetric struc-
ture operated near the PT -phase transition point can
detect very weak mechanical motions.

To show the enhancement of the measurement-
sensitivity by the PT -symmetric structure, we com-
pare the displacement spectral densities Sxx,PT(ω) and
Sxx,single(ω) of the PT -symmetric transducer and the
single-lossy-cavity transducer. The displacement spec-
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tral density Sxx,PT(ω) and the backaction force spectral
density SFF,PT(ω) of the PT optomechanical transducer
are found as [11, 39]:

Sxx,PT(ω) =
Γ2

−

~Ω
−

64g2

eff
Pin

(

1 + 4ω
Γ2

−

)

, (4)

SFF,PT(ω) =
16~g2

eff
Pin

Γ2

−

Ω
−

(

1 + 4ω
Γ2

−

)−1

, (5)

where Pin is the input power. It can be shown that
Sxx,PT(ω) and SFF,PT(ω) satisfy the Heisenberg inequal-

ity [50]:
√

Sxx,PT(ω)SFF,PT(ω) ≥ ~/2, which implies
the possibility of a smaller displacement spectral den-
sity if the backaction force spectral density is increased.
As shown in Eq. (4), the displacement spectral density
Sxx,PT(ω) is proportional to the decay rate Γ− of the
supermode and inversely proportional to the square of
the effective optomechanical coupling strength geff . Since
geff can be significantly increased near the PT -transition
point [Eq. (2)] and Γ− is very small due to gain-loss bal-
ance, the Sxx,PT(ω) of the PT optomechanical trans-
ducer beats the limits given for the single-cavity case
(Fig. 2). The Sxx,PT(ω) of the PT -symmetric system can
be more than two-orders of magnitude smaller than the
displacement spectral density Sxx,single (ω) of the single
cavity.
Finally, to show the effect of the gain in the struc-

ture, we compare the sensitivity of a system formed by
two coupled lossy cavities having loss rates of κ1 and
κ ≥ κ1 with that of the PT -symmetric system formed
by coupling a lossy cavity of loss rate κ with a gain cav-
ity of gain rate γ [39]. Note that the loss rates of the
cavities coupled to the mechanical mode are the same
(i.e., κ) for both systems. For the system of two lossy
cavities, there also exists a degenerate point where the
eigenfrequencies and the corresponding eigenstates of the
system coalesce. This point is generally known as the
exceptional point (EP) and has been studied in detail
within the field of non-Hermitian Hamiltonians [51]. For
such a system the EP takes place at g1 = (κ − κ1)/2.
Near an EP, we have geff ≫ g, as can be deduced from
Eq. (2). For g1 > (κ − κ1)/2, the supermodes are
split by 2

√

g21 − (κ− κ1)2/4 but have the same damp-
ing rates (κ + κ1)/2, whereas for g1 < (κ − κ1)/2, the
supermodes are degenerate at the frequency ∆ but have
different damping rates (κ+ κ1)/2∓

√

(κ− κ1)2/4− g21 .
We find the ratio of the amplification factor of the PT -
system to that of the two-lossy-cavity system to be
4γ2(κ+ κ1)/(κ− γ)3, which approaches infinity as the
gain-to-loss ratio in the PT -system approaches one. In
Fig. 2(b), we see that the normalized spectrum for the
two-lossy-cavity (curve with green stars) [39] is similar to
that of the single-cavity system when the damping rates
of the cavities are the same, and thus the back-action
spectrum of the mechanical motion cannot be detected
by the two-lossy-cavity system. We observe a similar de-
crease of the displacement spectral density for PT and

EP systems near the transition point, but the PT -system
performs much better because the effective damping rate
of the PT -system is much smaller due to the gain-loss
balance (Fig. 2(c)).

The enhancement of sensitivity in the EP (i.e., lossy
system; no optical gain) and PT -symmetric (i.e., with
optical gain balancing the loss) systems stems from the
square-root-topology [52, 53] of complex energy sur-
faces in their parameter space. This leads to significant
changes in their output spectra even for infinitesimally
small perturbations. This also provides a significant en-
hancement in the optomechanical coupling and the back-
action spectrum, with the effective coupling reaching its
maximum exactly at the EP (or PT -transition point).
In order to detect and resolve very small changes in the
spectrum of a system, the linewidths of the resonances
should be sufficiently narrow. Since the linewidths of
the resonances in a PT -symmetric system are narrower
than those in an EP system, because of the gain-loss bal-
ance in the former, PT -symmetric systems are superior
to EP systems for sensing purposes; although both have
the same square-root topology in their respective param-
eter spaces. For a single passive cavity mode, single ac-
tive cavity mode, or a single microlaser mode, which is
described by an isolated single first-order pole, such a
square-root topology is not present and the lineshapes
are symmetric and Lorentzian. Thus, such systems can-
not enhance the optomechanical coupling strength, and
they cannot modify the back-action spectrum. However,
an active cavity or a microlaser can modify the back-
ground spectrum, making it much narrower than that
for a passive cavity. Therefore, a perturbation that can-
not be observed or resolved in the spectrum (due to the
large background spectrum of a passive cavity) can be
resolved by an active cavity having sufficient optical gain
(i.e., a linewidth narrower than that of the passive cav-
ity) or by a microlaser due to their narrower background
spectrum.

We should note that enhanced-sensing at the EPs has
been previously discussed, for single-nanoparticle detec-
tion, by J. Wiersig [54] who showed that the sensitivity
of single-nanoparticle detection using the mode-splitting
method [17] in a single whispering-gallery-mode passive
cavity can be improved by three-fold if the microcav-
ity is first brought to an EP by two localized perturba-
tions [51, 55] before the arrival of the nanoparticle. It was
also suggested that a single active microcavity with opti-
cal gain could be used to better resolve the splitting due
to reduced linewidth [54] similar to what was reported in
Refs. [18, 56] . Our work goes beyond Ref. [54], bring-
ing together optomechanics and the concepts of EP and
PT -symmetry in coupled microcavities to build an op-
tomechanical transducer for enhanced metrology for dis-
placement measurement of nanobeams and cantilevers.

Conclusion.— We have proposed PT -metrology as an
efficient approach to improve the sensitivity and detec-
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tion limit of CAM beyond what is attainable in conven-
tional settings, where the system to be measured is cou-
pled to a lossy cavity. In PT -metrology, a second cavity
with gain is coupled to the lossy cavity to compensate its
loss, thereby increasing the quality factor of the effective
optical mode used to detect the weak signal, and en-
hancing the effective cavity-DUT coupling strength. The
enhancement is remarkable, especially near the transi-
tion point, where the supermodes of the system coalesce
in their frequencies, and can be further enhanced as the
gain-to-loss ratio approaches unity. We have showed that
it is possible to realize an ultra-sensitive optomechan-
ical transducer whose sensitivity is at least two orders
of magnitude better than single-cavity optomechanical
transducers. Our approach can be used for improving
the performance of nanoparticle sensors [54], navigation
systems, gravity-wave detectors and other cavity-assisted
detection schemes. Finally, the asymmetric lineshapes
near an EP have recently shown to be described as gen-
uine Fano resonances [57–59], suggesting a similarity of
the underlying physics for sensitivity enhancement in
Fano- and EP-based sensors. This issue requires further
studies as it is still unclear whether all resonances that
can be fit by the Fano formula have their origin in an EP.
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