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We formulate and exploit a computational inverse-design method based on topology optimization to demon-

strate photonic crystal (PhC) structures supporting complex spectral degeneracies. In particular, we discover

photonic crystals exhibiting third-order Dirac points formed by the accidental degeneracy of monopolar, dipo-

lar, and quadrupolar modes. We show that under suitable conditions, these modes can coalesce and form a

third-order exceptional point, leading to strong modifications in the spontaneous emission (SE) of emitters, re-

lated to the local density of states. We find that SE can be enhanced by a factor of 8 in passive structures, with

larger enhancements ∼
√
n3 possible at exceptional points of higher order n.

PACS numbers: 42.70Qs, 78.67.Pt, 02.30.Zz, 02.60.Pn

Dirac cones in photonic systems have received much atten-

tion because of their connections to intriguing optical prop-

erties, enabling large-area photonic-crystal (PhC) surface-

emitting lasers [1], zitterbewegung of photons [2], appearance

of zero-index behavior [3, 4], and as precursors to nontriv-

ial topological effects [5–7]. Recent work also showed that

Dirac-point degeneracies can give rise to rings of exceptional

points [8]. An exceptional point (EP) is a singularity in a

non-Hermitian system where two or more eigenvectors and

their corresponding complex eigenvalues coalesce, leading to

a non-diagonalizable, defective Hamiltonian [9, 10]. EPs have

been studied in various physical contexts, most notably lasers

and atomic as well as molecular systems [11, 12]. In re-

cent decades, interest in EPs has been re-ignited in connec-

tion with non-Hermitian parity-time symmetric systems [13],

especially optical media involving carefully designed gain and

loss profiles [14–20], where they can lead to intriguing phe-

nomena such as excess noise [21, 22], chiral modes [23],

directional transport [24, 25] and anomalous lasing behav-

ior [26–28]. Also recently, it became possible to directly ob-

serve EPs in photonic crystals (PhC) [8] and optoelectronic

microcavities [29]. Thus far, however, the main focus of these

works has been the effect of second-order exceptional points

(EP2s) realized through photonic radiations, where only two

modes coalesce: apart from a few mathematical analyses [30–

32] or works focused on acoustic systems [33], there has been

little or no investigation into the design and consequences of

EPs of higher order (where more than two modes collapse).

In this letter, we formulate and exploit a powerful inverse-

design method, based on topology optimization (TO), to

develop complex photonic crystals supporting Dirac points

formed out of the accidental degeneracy [34] of modes be-

longing to different symmetry representations. We show that

such higher-order Dirac points can be exploited to create

third-order exceptional points (EP3) along with complex con-

tours of EP2. Furthermore, we consider possible enhance-

ments and spectral modifications in the spontaneous emission

(SE) rate of emitters, showing that the local density of states

(LDOS) at an EP3 (14) can be enhanced 8-fold (in passive

systems) and can exhibit a cubic Lorentzian spectrum under

special conditions. More generally, we find enhancement fac-

tors ∼
√
n3 with increasing EP order n. Although the area

of photonic inverse-design is not new [35–37], only recently

has it gained traction, with most works [37–41] primarily fo-

cused on improving the performance of conventional devices

with known functionalities. Here, we show that these methods

can be extended and leveraged to realize structures exhibiting

unusual spectral properties.

Dirac cones are traditionally identified in simple geome-

tries involving cylindrical pillars or holes on a square or tri-

angular lattice [3, 42]. They arise from modal degeneracies

induced by underlying lattice symmetries (e.g. C4v or C3v)

and through fine-tuning of a few geometric parameters [3, 43].

Recently, it was demonstrated [8] that a Dirac cone at the Γ
point of a PhC with C4v symmetry can give rise to a ring of

EP2s. Such a feature is formed by degenerate monopolar (M)

and dipolar (D) modes, which transform according to A and

E representations of the C4v group [3, 43]. Even though the

degeneracy consists of one monopole and two dipoles, the

induced EP is of the second order, with only the monopole

and one of the dipoles colliding, while the coalescence of the

dipole partner is prevented by symmetry [8]. Below, we show

that an EP3 can be induced by a completely “accidental” third-

order degeneracy (D3) at the Γ of an inverse-designed PhC

lacking C4v symmetry, involving modes of monopolar (M),

dipolar (D) and quadrupolar (Q) nature.

Coupled-mode analysis.— The band structure in the vicin-

ity of such a D3 can be modeled by an approximate Hamilto-

nian of the form [42]:

H =





ω0 vMDkx 0
vMDkx ω0 vQDky

0 vQDky ω0



 (1)

Here, ω0 is the triply degenerate angular frequency and k =
(kx, ky) is the in-plane Bloch wave vector while vij , i, j ∈



2

{M,D,Q} characterizes the mode mixing away from the Γ
point, to first order in k [42]. Note that the diagonalization

of this Hamiltonian yields a completely real band structure

comprising a Dirac cone and a flat band, ω = ω0, ω0 ±
√

v2MDk
2
x + v2QDk

2
y .

To induce an EP, non-Hermiticity can be introduced by the

addition of a small imaginary perturbation to the Hamiltonian,

H =





ω0 + iγM vMDkx 0
vMDkx ω0 + iγD vQDky

0 vQDky ω0 + iγQ



 (2)

with γ > 0 (< 0) representing a small amount of absorption

(amplification) or radiation. An EP3 is associated with a third-

order algebraic multiplicity in the roots of the characteristic

polynomial P (ω) of H and thus can be enforced by vanishing

derivatives up to second order,

det (H− ωI) = P (ω) = 0, (3)

P ′(ω) = 0, (4)

P ′′(ω) = 0. (5)

Solving the above equations for ω, kx, and ky yields the EP3:

ωEP3 = ω0 +
i

3
(γM + γD + γQ) (6)

kEP3
x = ± 1

3vMD

√

(γD + γQ − 2γM)
3

3 (γQ − γM)
(7)

kEP3
y = ± 1

3vQD

√

(2γQ − γM − γD)
3

3 (γQ − γM)
(8)

where, any choice of distinct γ leading to real k induces an

EP3. In a lattice with C4v symmetry, this condition cannot be

satisfied, unless the symmetry relating the two dipolar modes

is severely and intentionally broken. Such a design would ne-

cessitate an overlay of spatially varying regions of gain/loss,

a scenario that seems experimentally challenging. In contrast,

we now present a novel design method that can discover PhC

geometries supporting “accidental” and tunable D3s.

Inverse-design method.— We construct an accidental D3 by

employing a large-scale optimization strategy that can dis-

cover novel topologies and geometries difficult to conceive

through conventional intuition. One such strategy, known as

topology optimization, employs powerful gradient-based nu-

merical algorithms capable of handling a very large design

space, typically considering every pixel or voxel as a degree

of freedom (DOF) in an extensive computational domain.

Our approach extends the work of Ref. 38, which showed

that it is possible to design a structure supporting a resonant

mode at some arbitrary frequency by maximizing the time-

averaged power output f = −Re
[

∫

J
∗ · E dr

]

emitted from

a time harmonic current source J at the desired frequency ω,

where the electric field response E is given by the solution of

Maxwell’s equations, ∇ × 1
µ
∇× E − ω2ǫ(r)E = iωJ [38].

To ensure that the designed resonance has the requisite modal
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FIG. 1. Inverse-designed 2d square lattices comprising refractive in-

dices = {2, 3, 1.82} (upper, middle, and lower schematics) materials

in air (white regions), with periodicity a = {1.05, 0.6, 1}λ. Lower

right: band structure of the lattice with refractive index = 2 (upper

schematic), revealing a Dirac point induced by the presence of an ac-

cidental third-order degeneracy (D3) of monopolar (M), dipolar (D),

and quadrupolar (Q) modes (upper insets). A schematic of the Bril-

louin zone (BZ) denoting high-symmetry k points (Y,Γ,X,M) is

also shown. Due to the lack of C4v symmetry, the dispersion along

the X and Y directions differ.

profile, the current J must be judiciously constructed. For

example, to design a transverse magnetic (TM) polarized

monopolar mode (M) at the Γ point of a PhC, J should can

be chosen as a point dipole J = δ(r − r0)ez at the center

r0 of the unit cell. Once the objective function f is identi-

fied, its gradient with respective to ǫ(r) can be calculated by

the so-called adjoint variable method [37, 38] and then sup-

plied to any large-scale gradient-based optimization algorithm

such as the method of moving asymptotes (MMA) [44]. To

design structures supporting multiple modes at the same fre-

quency with the requisite (M, D, Q) symmetries, we seek a

maxmin formulation in which one maximizes the minimum

of {fM, fD, fQ}, with currents chosen to ensure fields with

the desired symmetries, discussed in detail in the supplemen-

tal materials [45].

Our TO framework can be exploited to design high-order

degeneracies with distinct modal properties in arbitrary ma-

terial systems and photonic structures. Here, we use it to

demonstrate third-order degeneracies in binary dielectric/air

square lattices. Figure 1(left) shows three such structures, in-

volving materials (in air) of refractive indices {2, 3, 1.82} cor-

responding to (upper, middle, lower) figures with periodicities

a = {1.05, 0.6, 1} λ respectively, where λ is the design wave-

length in vacuum. Note that such refractive indices are typical

for common materials such as silicon nitride, lithium niobate,

diamond, silicon, alumina, or ceramics at optical, microwave,

and terahertz frequencies. We focus our discussion on the

structure with index = 2, leaving details of the two other de-

signs to the supplemental material [45]. Noticeably, the band
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FIG. 2. (a) Real and (c) imaginary eigenfrequencies as a function of kx and ky in the vicinity of a third order exceptional point (EP3) of the

structure described in Fig. 1, located at kEP3 ≈ {7, 1.8} × 10−5 ( 2π
a
) (red dot). The blue contours denote regions of second-order exceptional

points where two of the three modes coalesce. The plots in (b) and (d) show the corresponding band structures along the k lines marked by

red arrows. (e) Contour plot showing the enhanced Petermann factor (PF) associated with one of the modes in the vicinity of the EP3, and (f)

corresponding enhancement along the direction shown by the red arrow, for all three modes.

structure of this lattice exhibits a D3 comprising M, D and Q

modes at the Γ point, shown in Fig. 1 (lower right). Note that

since the optimized PhC lacks C4v symmetry (but possesses

C2v), there is only one dipolar mode at the designated fre-

quency and hence, the degeneracy of the three modes is com-

pletely accidental: potential mode mixing and avoided cross-

ings at the Γ point are prevented by the corresponding mir-

ror symmetries. In the vicinity of the tri-modal degeneracy,

the band structure exhibits conical Dirac dispersion accompa-

nied by a quadratic flat band. While general rules regarding

the occurrence of Dirac point dispersion in the vicinity of a

modal degeneracy are well understood from group theoretic

considerations, e.g. as arising from two different irreducible

representations [43], to our knowledge our TO-designed PhC

is the first demonstration of a Dirac point formed by three de-

generate modes belonging to three different representations,

namely the A1, A2 and B1 representations of the C2v group.

Third-order exceptional point.— The third order Dirac de-

generacy of Fig. 1 can be straightforwardly linked to an EP3

through the introduction of non-Hermiticity, i.e. material loss,

gain, or open boundaries (radiation). Here, we consider such

an EP3 by introducing a small imaginary part in the dielectric

constant, κ =
√

Im[ǫ] = 0.005, representing intrinsic mate-

rial loss and resulting in small decay rates {γM, γD, γQ}/ω0 ≈
{3.6, 4.3, 4.2}× 10−4. From (7), (8), it follows that there ex-

ists an EP3 at Re[ωEP3] ≈ ω0, Im[ωEP3] ≈ 4 × 10−4(2πc
a
),

kEP3
x ≈ 7 × 10−5 (2π

a
) and kEP3

y ≈ 1.8 × 10−5 (2π
a
) [45].

Figure 2(a) and (c) show the band structure in the vicinity

of the Γ point, along with slices, Fig. 2(b) and (d), indi-

cated by red arrows, illustrating the coalescence of both the

real and imaginary mode frequencies. Yet another interest-

ing feature of the dispersion landscape is that, apart from the

EP3, there also exists a contour of EP2 (blue lines), defined

by P (ω; kx, ky) = 0, P ′(ω; kx, ky) = 0, similar to the ring

of EP2 observed in Ref. 8.

A defining signature of non-Hermitian systems is that

eigenvectors are no longer orthogonal. Rather, they are bi-

orthogonal [10] in the sense of an unconjugated “inner prod-

uct” between left and right eigenvectors,
(

ΨL
n

)T
ΨR

m = δnm,

defined such that AΨR = ω2ΨR and ATΨL = ω2ΨL, where

A is the Maxwell operator ǫ̂−1(∇+ ik)× 1
µ
(∇+ ik)× under

Bloch boundary conditions at a specific k, ǫ̂ is the diagonal

permittivity tensor ǫ(r). At our EP3 , the three eigenmodes

coalesce and become self-orthogonal [16], leading to vanish-

ing inner products
(

ΨL
n

)T
ΨR

n = 0, n ∈ {1, 2, 3}, as charac-

terized by the so-called Petermann factor (PF),

PFn =
||ΨL

n||2||ΨR
n||2

| (ΨL
n)

T
ΨR

n|2
(9)

where ||...||2 is the usual L2 norm given by ||Ψ||2 = ΨT∗Ψ.

Figure 2(e,f) illustrates the divergence of the PF for all three

modes as k → k
EP3. Note that there are also PF divergences

associated with the M, D modes at the EP2 contours.

Local density of states.— The divergence of the Petermann

Factor (PF) in open systems can lead to many important ef-

fects [11, 47]. In particular, the SE rate of emitters in resonant

cavities is traditionally expressed via the PF (a generalization

of the Purcell factor [47]), becoming most pronounced near

EPs where the latter diverges [48]. More rigorously, how-

ever, the SE rate is given by the LDOS, or electromagnetic

Green’s function (GF), which though enhanced turns out to

be finite even at EPs [22]: coalescent eigenmodes no longer

form a complete basis, requiring instead an augmented basis

of associated Jordan modes and hence a different definition of

LDOS. Such an expansion was recently employed in Ref. 22

to demonstrate limits to LDOS at EP2s in both passive and ac-

tive media; here, we extend these results to the case of EP3s.

The LDOS at an EP3 can be obtained from the diagonal
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FIG. 3. (a) Local density of states (LDOS) at the center of the unit cell of the structure in Fig. 1, evaluated at either kEP3 ≈ {7, 1.8}×10−5( 2π
a
)

(red curves) or k = {7, 1.8}× 10−2( 2π
a
) ≫ k

EP3 (blue curves). (b) Maximum (8-fold) LDOS enhancement associated with a EP3, computed

via the reduced 3 × 3 Hamiltonian model of (2). (c)–(f) LDOS profiles evaluated at either ωEP3 or at the non-degenerate frequencies ω1, ω2,

and ω3, corresponding to the EP3 and far-away points described in (a). Note that the LDOS is evaluated only in air regions since the LDOS

within a lossy medium formally diverges [46].

elements of the imaginary part of the dyadic GF [45]:

GEP3 ≈
ΨR

EP3(Ψ
L
EP3)

T

(ω2 − ω2
EP3)

3
+

ΨR
EP3(Φ

L
I )

T +ΦR
I (Ψ

L
EP3)

T

(ω2 − ω2
EP3)

2

+
ΨR

EP3(Φ
L
II)

T +ΦR
I (Φ

L
I )

T +ΦR
II(Ψ

L
EP3)

T

ω2 − ω2
EP3

. (10)

Equation 10 involves a complicated sum of cubic, quadratic,

and linear Lorentzian profiles weighted by the outer products

of the only surviving left (right) eigenmode Ψ(L,R)
EP3 and the

two associated Jordan vectors Φ(L,R)
(I,II) , determined by the third-

order Jordan decomposition of the Maxwell eigenproblem,

AEP3Ψ
R
EP3 = ω2

EP3Ψ
R
EP3 (11)

AEP3Φ
R
I = ω2

EP3Φ
R
I +ΨR

EP3 (12)

AEP3Φ
R
II = ω2

EP3Φ
R
II +ΦR

I , (13)

and its associated dual. Equation 10 reveals that the LDOS

spectrum ∼ −Im
[

Tr
(

G
)]

can vary dramatically depending

on position, frequency, and decay rates.

Figure 3(a) shows the LDOS spectra at the center of the

unit cell r0, evaluated at either kEP3 (red curves) or a point

k = {7, 1.8} × 10−2(2π/a) ≫ k
EP3 (blue curves) far away

from the EP3, demonstrating an enhancement factor of≈ 2.33
in this geometry. Figure 3(c-f) show the corresponding spatial

LDOS profiles at and off the EP3, illustrating the seamless

coalescence of the eigenmodes. Even greater enhancements

are possible under different loss profiles, i.e., γM, γD and γQ,

as illustrated by the following analysis based on the reduced

Hamiltonian framework above. In particular, the GF at a given

location in the unit cell can be directly related to the diagonal

entries of the resolvent of H, defined as G ≡ (H − ωI)−1.

For example, the third entry of G yields the LDOS at points

where the intensity of the quadrupole mode dominates. Con-

sider a scenario in which only the monopole mode has a finite

lifetime, i.e., γM = γ while γD = γQ = 0. It follows from (2)

and (10) that the LDOS in this case is given by,

− Im{GEP3[3, 3]} ≈ −2γ2

27

γ̄3 − 3γ̄(Re[ωEP3]− ω)2

(Re[ωEP3]− ω)2 + γ̄2]3

+
γ

3

γ̄2 − (Re[ωEP3]− ω)2

[(Re[ωEP3]− ω)2 + γ̄2]2
− γ̄

(Re[ωEP3]− ω)2 + γ̄2
,

(14)

where γ̄ ≡ γ/3. Moreover, the peak LDOS at ω = Re[ωEP3]
is found to be 8/γ, corresponding to an 8-fold enhancement

relative to the peak LDOS far away from the EP3. Such an

enhancement is illustrated in Fig. 3(b), which also reveals the

highly non-Lorentzian spectrum associated with this EP3. We

remark that this enhancement in LDOS does not lead to ad-

ditional dissipation, which is made clear upon observing that

the loss rates (described by the imginary parts of the complex

eigenfrequencies) remain roughly the same at and away from

the EP. Instead, it arises from the complex, constructive inter-

ference of these modes, as mediated by the decay channels.

Note also that similar enhancements can also be realized in

non-dissipative media so long as there exist decay channels

leading to non-Hermiticity (e.g. radiative or coupling losses).

It is possible to exploit a simple sum rule, namely that

the spectrally integrated LDOS is a constant [49], to pre-

dict the maximum enhancement possible for an EP of arbi-

trary order n. In particular, the integrated LDOS of an order-

n Lorentzian of the form Ln(ω) = γ
2n−1

cn
[(ω−Re[ωEPn])2+γ2]n is

Sn(ω) =
∫

dω Ln(ω) =
cn

√
πΓ[n−

1
2 ]

Γ[n] , where Γ is the gamma

function. It follows from the sum rule that nS1(ω) = Sn(ω)

and, consequently, that cn/c1 =
√
πΓ[n+1]

Γ[n−
1
2 ]

∼
√
n3 for large

n ≫ 1. In the case of an EP3, the maximum enhancement

c3/c1 = 8, which is realized in the scenario discussed above.

Concluding remarks.— Although fabrication of the above

“bar-code” structures may prove challenging at visible wave-

lengths using currently available technologies, future experi-

mental realizations are entirely feasible in the mid-infrared to

microwave regimes, where complex features can be straight-

forwardly fabricated in polymers and ceramics with the aid of

computerized machining, 3D printing, laser cutting, additive

manufacturing, or two-photon lithography [50–52]. In partic-
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ular, the low-index (refractive index = 1.82) design (Figure 1

lower schematic) exhibits regular and relatively smooth fea-

tures (the smallest of which ∼ 150 nm for operation at mid-

IR wavelengths), making it accessible to standard electron-

beam lithography techniques. Furthermore, while the above

predictions offer a proof of principle, the same inverse-design

techniques can be applied to the design of higher-order EPs

as well as other topologies, including cavities. Our ongoing

work in this regard includes the design of chiral modes, pho-

tonic Weyl points, topological insulators, and omnidirectional

Dirac-cone, zero-index meta-materials.
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W. D. Heiss, and A. Richter. Observation of a chiral state in a

microwave cavity. Phys. Rev. Lett., 90:034101, 2003.

[24] Zin Lin, Hamidreza Ramezani, Toni Eichelkraut, Tsampikos

Kottos, Hui Cao, and Demetrios N. Christodoulides. Unidi-

rectional invisibility induced by PT -symmetric periodic struc-

tures. Phys. Rev. Lett., 106:213901, 2011.

[25] Liang Feng, Ye-Long Xu, William S. Fegadolli, Ming-Hui Lu,
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