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We report measurements of the geometric alignment of the small-scale turbulent stress and the
large-scale rate of strain that together lead to the net flux of energy from small scales to large scales
in two-dimensional turbulence. We find that the instantaneous alignment between these two tensors
is weak, and thus that the spectral transport of energy is inefficient. We show, however, that the
strain rate is much better aligned with the stress at times in the past, suggesting that the differential
advection of the two is responsible for the inefficient spectral transfer. We provide evidence for this
conjecture by measuring the alignment statistics conditioned on weakly changing stress history.
Our results give new insight into the relationship between scale-to-scale energy transfer, geometric
alignment, and advection in turbulent flows.

The primary feature that distinguishes turbulence
from more generic unsteady flow is the directed flux of
energy from the scales at which it is injected into the flow
to the scales at which it is dissipated [1]. This flux pro-
ceeds from large to small scales in three dimensions in a
“direct” cascade, and in an “inverse” cascade from small
to large scales in two dimensions. Although the intricate
details are not fully understood, there is general consen-
sus on the broad mechanisms that drive these cascades.
Building on ideas going back to Taylor [2, 3], the 3D
direct cascade is thought to be the consequence of the
stretching, and therefore intensification, of vortices by
the turbulent strain [4]. In 2D, vortex stretching cannot
occur for geometric reasons; instead, a vortex thinning
mechanism, where patches of (conserved) vorticity are
reoriented and distorted by the turbulent strain without
changing their circulation, is taken to be responsible for
the inverse transfer of energy from small to large scales
[5, 6].
As with any energy flux, turbulent cascades can be in-

terpreted as the result of the action of a stress against a
rate of strain. In turbulence, the requisite stress arises
from the exchange of momentum between scales due to
the nonlinearity in the Navier–Stokes equations. In 3D,
the large scales do work on the small scales, transferring
energy to them; and in 2D, the small scales do work on
the large scales. Once cast in this language, it becomes
clear that the relative geometry of the turbulent stress
and the large-scale strain rate is key to determining the
efficiency of the energy cascade: components of the tur-
bulent stress that are orthogonal to the strain rate can
do no work, and therefore cannot transfer any energy.
Thus, one would expect strong alignment between these
two tensors to explain the observation that all turbulent
flows display a cascade. In both 2D and 3D turbulence,
however, it has long been known that the alignment is
surprisingly weak [7]. In 3D, with some assumptions
[8], one can relate the stress–strain-rate alignment to the
alignment between the vorticity vector and the eigenvec-
tors of the strain rate. Efficient downscale transfer of en-

ergy requires that the vorticity be aligned with the most
extensional eigenvector of the strain rate; however, vor-
ticity is well known to align instantaneously with the in-

termediate strain-rate eigenvector instead [9]. Although
this intermediate eigenvector is also weakly extensional in
turbulence [9], the misalignment with the most strongly
stretching direction would appear to severely limit the
amount of energy that can be driven downscale in the
cascade. Likewise, in 2D, the stress and strain rate are on
average nearly perfectly misaligned [10, 11], again lead-
ing to an energy flux that is much weaker than it might
otherwise be.
It has recently been argued that in 3D turbulence,

this conundrum can be resolved by properly accounting
for advection [12–14]: by noting that both vorticity and
strain evolve spatiotemporally, it has been shown that
the apparent alignment of vorticity with the intermedi-
ate strain-rate eigenvector occurs because the vorticity is
in fact aligned preferentially with the direction of the ex-
tensional eigenvector at a previous time. In this Letter,
we show that a similar effect occurs in 2D turbulence.
Using a filter-space technique to study the flux of energy
between scales in a spatially resolved way [10, 15–21],
we measure both the turbulent stress and the large-scale
strain rate. By considering the inner product of these
two tensors measured at different times along Lagrangian
trajectories, we show that the degree of alignment varies
with the time lag; in particular, we find that the (large-
scale) strain rate lags the (small-scale) stress. Thus, we
find that the strain rate attempts to align with the pre-

vious direction of the stress, much as was observed for
strain and vorticity in 3D turbulence [12, 13]. To confirm
this interpretation, we consider the conditional statistics
of the alignment for trajectories along which the stress
exhibited little change; consistently, these cases show a
higher degree of alignment than the full ensemble of tra-
jectories does. Our results lead to the conclusion that ad-
vection tends to disrupt the delicate geometric balance
that is required to transfer energy from scale to scale,
thereby reducing the efficiency of the turbulent cascade.
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To study this alignment, we conducted experiments
in an electromagnetically driven thin-layer flow cell that
produces nearly two-dimensional flow [22]. We have de-
scribed this apparatus in detail previously [20, 22], and
so we do so only briefly here. The working fluid is a uni-
form layer of salt water (16% NaCl by mass in deionized
water) measuring 86× 86× 0.5 cm3. This fluid sits on a
glass substrate above a square grid of neodymium-iron-
boron permanent magnets spaced by Lm = 25.4 mm.
The magnetic poles point vertically, and are arranged in
stripes of alternating polarity. By passing a d.c. elec-
tric current laterally through the fluid, we can apply a
Lorentz body force and generate flow. As long as the cur-
rent is not too large, this arrangement produces a nearly
2D flow field [22]. The nondimensional strength of the
forcing can be captured by the in-plane Reynolds number
Re = u′Lm/ν, where u′ is the root-mean-square velocity
and ν is the kinematic viscosity [23]. Here, Re = 270.
To measure the flow field, we use particle tracking ve-
locimetry. We seed the flow with 51-µm-diameter fluo-
rescent polystyrene microspheres. To remove any clus-
tering effects due to surface tension and to confine the
particles to a single plane, we float a layer (also 5 mm
deep) of less-dense pure water on top of the salt-water
layer; the particles lie on the (miscible) interface be-
tween the two. We image the motion of the particles
from above with a 4-megapixel camera at 60 frames per
second. We extract particle trajectories from the movies
using a multi-frame predictive tracking algorithm [24],
from which accurate velocities can be calculated. Since
we track roughly 30,000 particles per frame, they are spa-
tially dense enough that highly resolved Eulerian veloc-
ity fields can be determined; to do so while also remov-
ing noise and ensuring two-dimensionality, we project the
measured particle velocities onto a basis of streamfunc-
tion eigenmodes [22]. Subsequently, to compute accurate
and unbiased Lagrangian statistics with desired initial
conditions, we construct virtual fluid-element trajecto-
ries by integrating their kinematic equations of motion
[25].

Studying the details of the flux of energy between
scales in turbulence has historically been challenging.
Spectral methods can provide the mean transfer of en-
ergy, but after Fourier transforming, all connection to
the spatial degrees of freedom of the flow is lost. Here,
we instead use a filter-space technique (FST) to resolve
the energetic coupling between scales simultaneously in
space and in scale [10, 16–21]. The core of an FST is the
application of a spectral low-pass filter to the measured
velocity field. If this filter has a cutoff lengthscale of r,
then all variation of the field on scales smaller than r
is suppressed, while the large-scale structure is retained.
The utility of this approach becomes clear when one con-
siders, for example, the equation of motion for the fil-

tered kinetic energy E(r) = (1/2)u
(r)
i u

(r)
i , where the su-

perscript (r) denotes the cutoff scale of the filter and

summation is implied over repeated indices. The most
salient difference between this equation and that for the
full kinetic energy is the appearance of the new term

Π(r) = −
[

(uiuj)
(r) − u

(r)
i u

(r)
j

] ∂u
(r)
i

∂xj

= −τ
(r)
ij s

(r)
ij , (1)

where s
(r)
ij is the rate of strain (that is, the symmetric

part of the velocity gradient) of the filtered velocity field

and τ
(r)
ij is a turbulent stress tensor. Π(r) can be inter-

preted as the flux of energy between scales smaller than
r and scales larger than r; for more details and a full
derivation of this term, see Refs. [17, 18, 20]. And unlike
in a fully spectral approach, Π(r) can be measured at any
spatial location, since it only depends on spatially local
quantities. With our sign convention, Π(r) < 0 denotes
a flux of energy from small scales to large (i.e., inverse
energy flux), while Π(r) > 0 denotes a flux of energy from
large scales to small.
In 2D, Π(r) can be re-expressed in terms of the largest

eigenvalues λ
(r)
τ and λ

(r)
s of the (deviatoric) stress and

strain rate, respectively, and the angle Θ
(r)
sτ between the

corresponding (unit) eigenvectors ê
(r)
τ and ê

(r)
s as [11, 21,

26]

Π(r) = −2λ(r)
τ λ(r)

s cos 2Θ(r)
sτ . (2)

Written in this way, it is clear that the alignment of
the stress and the strain rate is critical for determin-
ing the local energy flux between scales. In particular,
when the eigenframes of the stress and the strain rate
are oriented at 45◦ with respect to each other, the energy
flux will vanish regardless of the magnitudes of these ten-

sors; and indeed, as we have shown previously [11], Θ
(r)
sτ

is more highly correlated with the spatial structure of

Π(r) than are λ
(r)
τ or λ

(r)
s . Thus, we suggest here that

| cos 2Θ
(r)
sτ | can be thought of as the efficiency of the en-

ergy transfer mechanism, as it directly gives the frac-
tion of the turbulent stress that does work against the
large-scale strain and therefore transfers energy between

scales. When Θ
(r)
sτ = 0, the stress and the strain rate are

perfectly aligned and this efficiency goes to unity; when

Θ
(r)
sτ = 45◦, they are perfectly misaligned and the ef-

ficiency vanishes. When Θ
(r)
sτ = 90◦, the stress aligns

perfectly with the compressive strain-rate eigenvector,
giving again a maximally efficient energy transfer but
toward smaller length scales.
In Fig. 1, we show the mean (averaged over space

and time) values of Π(r) and Θ
(r)
sτ as functions of the

filter scale r. These results are relatively insensitive to
the particular implementation of the FST [18]; here, we
used a spatially isotropic finite impulse response filter
constructed by convolving a sharp spectral filter with a
frequency cutoff of 2π/r with a Gaussian window func-
tion that reduces ringing. As we have observed before
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FIG. 1. (a) Mean spectral energy flux Π(r) as a function of
the filter scale r scaled by the magnet spacing Lm. Negative
values correspond to a flux of energy to larger length scales.

(b) Mean instantaneous angle Θ
(r)
sτ (in units of π) between

the eigenframes of the stress τ
(r)
ij and the strain rate s

(r)
ij as a

function of filter scale r. The dashed line shows 45◦.

[11], for length scales above ∼ 1.6Lm, which we take to
be roughly the energy injection lengthscale Linj, we see
net inverse energy flux, as is expected in two-dimensional
turbulence, although without a developed inertial range
given that our Reynolds number is relatively low. The

mean value of 〈Θ
(r)
sτ 〉 is very close to 45◦, the angle at

which the stress and the strain rate are perfectly mis-
aligned, at all scales, though slightly smaller where there
is net inverse energy transfer. This result underscores the
well known fact that the net energy cascade in turbulence
arises from a weak asymmetry between locally strong for-
ward and inverse transfer events [10, 18, 20, 27]. In terms
of our efficiency language, for r < Linj the energy trans-
fer is completely inefficient; but even for r > Linj, where

the energy cascade does appear to operate, 〈Θ
(r)
sτ 〉 ≈ 37◦

and the efficiency is only about 27%. Thus, the observed
net energy flux through the cascade is much weaker than
it otherwise might be.

This result naturally leads to the question of why the
cascade is so inefficient. Here, we propose at least a par-
tial answer: that advection upsets the delicate balance
between the turbulent stress and the large-scale strain
rate that is required for energy transfer between scales.
A common explanation for the inverse energy cascade
in 2D turbulence is a vortex-thinning mechanism [5, 6].
This picture considers the evolution of a initially circular
small-scale vortex embedded in a large-scale strain field.
It argues that as the vortex is stretched along the exten-
sional straining direction and thinned along the compres-
sive direction, its net kinetic energy will decrease (since
its circulation must remain constant due to Kelvin’s the-
orem but the length of its perimeter will increase due to
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FIG. 2. Average of Θ
(r)
sτ (∆t)〉, the angle between the eigen-

frames of the stress at one time and the strain rate at a time
∆t later, for several different filter scales r. Each curve shows

Θ
(r)
sτ (∆t)〉 for a different r, and the colors correspond to the

colors of the symbols in Fig. 1. The dashed line shows 45◦.

the straining) but its net velocity will become oriented
along the straining direction, producing a tensile turbu-
lent stress that reinforces the large-scale strain [10]. For
this picture to be correct, however, the initial vortex must
remain embedded in a coherent strain field long enough
for the thinning to occur—and thus, the vortex-thinning
picture implicitly ignores the effects of advection, or at
best assumes that the strain field and the vortex will
be advected in lockstep. This is highly unlikely to be
the case; for example, in 3D turbulence, it has long been
known that rotation has a significantly longer correlation
time along trajectories than does strain [28, 29]. Thus, as
a vortex in a real, evolving turbulent flow begins to dis-
tort and align with the local large-scale strain, the strain
field itself will change, leading to a weaker-than-expected
instantaneous alignment.
To test this idea, we considered not the instantaneous

alignment between τ
(r)
ij and s

(r)
ij but rather the alignment

between these two tensors computed at different times
along the same Lagrangian trajectory. In Fig. 2, we plot

〈Θ(r)
sτ (∆t)〉 = 〈cos−1(ê(r)τ (t) · ê(r)s (t+∆t))〉, (3)

where the average is taken over an ensemble of many
trajectories beginning from different initial positions at
different times, for a range of filter scales r. In all cases,

we see that 〈Θ
(r)
sτ (∆t)〉 decreases as ∆t increases from 0;

that is, we observe that the alignment between the stress
now and the rate of strain later (or equivalently the rate
of strain now and the stress previously) is stronger than
the instantaneous value. The trend is the opposite for
negative ∆t; for negative time lags, the angle quickly
equilibrates to 45◦, which we would expect if the orien-
tation of the two tensors were uncorrelated. For filter
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FIG. 3. Probability density functions (PDFs) of Θ
(r)
sτ (∆t)〉 at

r = 2Lm (the most intense inverse energy flux) for positive
and negative ∆t. For increasing positive ∆t, the peak of the
PDF shifts toward more alignment; however, for increasing
negative ∆t, the peak shifts toward misalignment and the
PDF ultimately becomes uniform.

scales smaller than Linj, the increasing alignment we see
for positive ∆t quickly disappears, consistent with the ex-
pectation that any tendency toward a net cascade in this
range of scales should be weak. For larger r, however,
the net alignment persists for several injection timescales
Tinj = Linj/u

′. These results allow us to draw two con-
clusions. First, it is clear that the alignment between the
stress and the strain rate has coherent dynamics, and
therefore that advection plays a role in disrupting the in-
stantaneous alignment, just as it does in 3D turbulence
[12–14]. And second, since the alignment is enhanced for
positive ∆t, our results indicate that the rate of strain
follows the turbulent stress, in apparent contradiction to
the standard vortex thinning picture [10].

This second conclusion can be bolstered by considering

the full probability density functions (PDFs) of Θ
(r)
sτ (∆t)

in addition to just the mean value for different ∆t, as we
show in Fig. 3 for both positive and negative ∆t. As ∆t
increases in forward time from 0, the peak of the PDF

shifts to lower values, eventually hitting Θ
(r)
sτ (∆t) ≈ 0

when ∆t ≈ Tinj. For negative time lags, however, the
peak of the PDF shifts toward 45◦, and the PDF eventu-
ally becomes uniform, indicating no preferred orientation
between the current stress and the previous rate of strain.

Our measurements show that the orientation of the
eigenframe of the large-scale rate of strain follows the
evolution of the small-scale turbulent stress but with a
time lag. We have argued that this result implicates the
differential advection of the stress and the strain rate as
the origin of the surprisingly weak instantaneous align-
ment of these two tensors. It then follows that if we
consider only those trajectories for which the stress has
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FIG. 4. Conditional averages of Θ
(r)
sτ (see text for the def-

inition) as a function of α, the multiplier of the ensemble-
averaged stress-angle standard deviation. Smaller values of α
correspond to less prior variation in the orientation of the
stress eigenframe. Data are shown for three filter scales:
r = Lm (squares), r = 2Lm (circles), and r = 3Lm. Er-
ror bars show the standard error of the mean. In all cases,
weaker prior variability of the stress eigenframe orientation
corresponds to stronger instantaneous alignment between the
stress and the rate of strain.

not changed much in the past, we should expect to see
stronger instantaneous alignment of the stress and the
strain rate. To test this idea, we computed conditional

statistics of Θ
(r)
sτ . To characterize the history of the stress

along a trajectory, we first measured the time series of

φ
(r)
τ , the angle between ê

(r)
τ and the horizontal axis, for

each trajectory. We take the standard deviation of φ
(r)
τ

over the previous Tinj, which we label σ
(r)
φ , as a mea-

sure of the prior variability of the stress orientation. In-

stants along a trajectory for which σ
(r)
φ is small have

experienced fairly uniform stress fields over their recent
history. We then constructed the conditional averages
〈

Θ
(r)
sτ |σ

(r)
φ = α〈σ

(r)
φ 〉

〉

; that is, we measured the mean in-

stantaneous Θ
(r)
sτ given that the fluctuations of φ

(r)
τ were

some multiple α of the ensemble-averaged value. Our
results for a range of α are shown in Fig. 4 for three
different filter scales. In all cases, it is clear that, as con-

jectured, less prior variability in the orientation of τ
(r)
ij

corresponds to stronger instantaneous alignment between
the stress and the strain rate. Thus, our interpretation
of our results is borne out by this conditional analysis.

We have demonstrated that the alignment between the
turbulent stress and the large-scale rate of strain that is
crucial for characterizing the efficiency of scale-to-scale
energy transfer in turbulence cannot be understood with-
out considering the effects of advection. In particular,
our results show that the strain rate is better aligned
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with the stress at previous times along Lagrangian tra-
jectories that with its instantaneous value, implying that
advection reduces the efficiency of the cascade from what
it would be in a static turbulent field. These results ar-
gue that the typical vortex stretching and vortex thinning
mechanisms thought to be responsible for the energy cas-
cade may need to be modified to account for fluid motion
properly.
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Foundation under grants CBET-1600292 and CMMI-
1563489.

∗ nto@stanford.edu
[1] G. Falkovich, “Symmetries of the turbulent state,” J.

Phys. A: Math. Theor. 42, 123001 (2009).
[2] G. I. Taylor, “The transport of vorticity and heat through

fluids in turbulent motion,” Proc. R. Soc. Lond. A 135,
685–702 (1932).

[3] G. I. Taylor, “Production and dissipation of vorticity in
a turbulent fluid,” Proc. R. Soc. Lond. A 164, 15–23
(1938).

[4] H. Tennekes and J. L. Lumley, A First Course in Turbu-

lence (MIT Press, Cambridge, MA, 1972).
[5] V. P. Starr, Physics of Negative Viscosity Phenomena

(McGraw-Hill, New York, 1968).
[6] R. H. Kraichnan, “Eddy viscosity in two and three di-

mensions,” J. Atmos. Sci. 33, 1521–1536 (1976).
[7] J. M. Wallace, “Twenty years of experimental and di-

rect numerical simulation access to the velocity gradient
tensor: What have we learned about turublence?” Phys.
Fluids 21, 021301 (2009).

[8] V. Borue and S. A. Orszag, “Local energy flux and
subgrid-scale statistics in three-dimensional turbulence,”
J. Fluid Mech. 366, 1–31 (1998).

[9] W. T. Ashurst, A. R. Kerstein, R. M. Kerr, and C. H.
Gibson, “Alignment of vorticity and scalar gradient with
strain rate in simulated Navier-Stokes turbulence,” Phys.
Fluids 30, 2343–2353 (1987).

[10] S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan,
and Z. Xiao, “Physical mechanism of the two-dimensional
inverse energy cascade,” Phys. Rev. Lett. 96, 084502
(2006).

[11] Y. Liao and N. T. Ouellette, “Long-range ordering of
turbulent stresses in two-dimensional flow,” Phys. Rev.
E 91, 063004 (2015).

[12] H. Xu, A. Pumir, and E. Bodenschatz, “The pirouette
effect in turbulent flows,” Nat. Phys. 7, 709–712 (2011).

[13] A. Pumir, E. Bodenschatz, and H. Xu, “Tetrahedron de-

formation and alignment of perceived vorticity and strain
in a turbulent flow,” Phys. Fluids 25, 035101 (2013).

[14] R. Ni, N. T. Ouellette, and G. A. Voth, “Alignment
of vorticity and rods with Lagrangian fluid stretching in
turbulence,” J. Fluid Mech. 743, R3 (2014).

[15] M. Germano, “Turbulence: the filtering approach,” J.
Fluid Mech. 238, 325–336 (1992).

[16] S. Liu, C. Meneveau, and J. Katz, “On the properties
of similarity subgrid-scale models as deduced from mea-
surements in a turbulent jet,” J. Fluid Mech. 275, 83–119
(1994).

[17] G. L. Eyink, “Local energy flux and the refined similarity
hypothesis,” J. Stat. Phys. 78, 335–351 (1995).

[18] M. K. Rivera, W. B. Daniel, S. Y. Chen, and R. E.
Ecke, “Energy and enstrophy transfer in decaying two-
dimensional turbulence,” Phys. Rev. Lett. 90, 104502
(2003).

[19] D. H. Kelley and N. T. Ouellette, “Spatiotemporal per-
sistence of spectral fluxes in two-dimensional weak tur-
bulence,” Phys. Fluids 23, 115101 (2011).

[20] Y. Liao and N. T. Ouellette, “Spatial structure of spectral
transport in two-dimensional flow,” J. Fluid Mech. 725,
281–298 (2013).

[21] Y. Liao and N. T. Ouellette, “Geometry of scale-to-
scale energy and enstrophy transport in two-dimensional
flow,” Phys. Fluids 26, 045103 (2014).

[22] D. H. Kelley and N. T. Ouellette, “Onset of three-
dimensionality in electromagnetically forced thin-layer
flows,” Phys. Fluids 23, 045103 (2011).

[23] D. H. Kelley and N. T. Ouellette, “Using particle tracking
to meaure flow instabilities in an undergraduate labora-
tory experiment,” Am. J. Phys. 79, 267–273 (2011).

[24] N. T. Ouellette, H. Xu, and E. Bodenschatz, “A quan-
titative study of three-dimensional Lagrangian particle
tracking algorithms,” Exp. Fluids 40, 301–313 (2006).

[25] N. T. Ouellette, P. J. J. O’Malley, and J. P. Gollub,
“Transport of finite-sized particles in chaotic flow,” Phys.
Rev. Lett. 101, 174504 (2008).

[26] Z. Xiao, M. Wan, S. Chen, and G. L. Eyink, “Physical
mechanism the inverse energy cascade of two-dimensional
turbulence: a numerical approach,” J. Fluid Mech. 619,
1–44 (2008).

[27] S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao,
“Physical mechanism of the two-dimensional enstrophy
cascade,” Phys. Rev. Lett. 91, 214501 (2003).

[28] P. K. Yeung and S. B. Pope, “Lagrangian statistics from
direct numerical simulations of isotropic turbulence,” J.
Fluid Mech. 207, 531–586 (1989).

[29] S. S. Girimaji and S. B. Pope, “A diffusion model for
velocity gradients in turbulence,” Phys. Fluids A 2, 242–
256 (1990).


