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Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrin-
kled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of
the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse
stresses, thereby leading to buckling of the ribbon. Here we focus on the tessellation patterns made
of triangular facets. Our experimental observations are described within an “asymptotic isometry”
approach that brings together geometry and elasticity. The geometry consists of parametrized fam-
ilies of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and
tensile load. The energy, whose minimization selects the favored structure among those families, is
governed by the tensile work and bending cost of the pattern. This framework describes the coex-
istence lines in a morphological phase diagram, and determines the domain of existence of faceted
structures.

Sheets subjected to external forces store the exerted
work in elastic deformations that underlie wrinkled and
crumpled states. Under tension, the exerted work is typ-
ically stored as stretching energy. When the forces are
compressive, strain is negligible and the exerted work is
instead stored as bending energy. For instance, a sheet
resting on a soft substrate and compressed uniaxially de-
forms isometrically into wrinkles or folds [1, 2]. However,
when compression results from geometrical constraints,
the final shape may involve a complex combination of
bending and stretching energies. For instance, confin-
ing a thin sheet in 3D (i.e. a crumpled paper ball) is
often described as an assembly of flat polygonal facets
delimitated by ridges where stretching and bending pre-
dominate [3]. Such a faceted morphology is an efficient
minimizer of stretching since it is isometric to the unde-
formed sheet (i.e. strainless) everywhere except at those
narrow ridges. Two such types of ridges have been re-
ported: i) isometric (cylindrical) ridges, which involve
only bending, and ii) stretching ridges, in which bend-
ing and stretching energies are comparable, leading to a
width wr ∼ L2/3t1/3, where L � wr is the ridge length
and t� wr is the sheet thickness [3, 4]. In addition, tran-
sitions from isometric to stretching ridges were recently
reported for simple geometries. Witten showed that a
single stretching ridge becomes isometric when both ends
are truncated [5], and Fuentealba et al. have demon-
strated a similar phenomenon for a tearing flap, when
the pulling force exceeds a threshold Fc ∼ B/(t2/3L1/3)
(where B ∼ Et3 is the bending modulus and E the
Young’s modulus of the sheet) [6]. Both studies suggest
that the curvature at the ridge’s end completely deter-
mines its shape.

In this Letter, we investigate the transition between
isometric and stretching ridges in a twisted ribbon, and
characterize its impact on the mechanics of ribbons.
Indeed, twisting ribbons was suggested as an original

method to geometrically constraint thin sheets. In this
set-up, first proposed by Green [7, 8], the two short edges
of a flat ribbon are clamped and held apart by a tensile
force while a twist is applied. In contrast to crumpling
experiments, the existence of two degrees of freedom, the
twist angle, η and the tensile force, T , enriches the va-
riety of observed morphologies. The twist and tension
determines, i) the stretching of the edges, η2/2 and ii)
the contraction of the midline, χ = η2/24 − T (where
χ = 1− Lee/L, Lee being the end-to-end distance). The
helicoid is the basic shape appearing for moderate twist
angles, η <

√
24T (Fig. 1d). Upon increasing the twist

below a critical tension T ∗, the helicoid midline is con-
tracted and undergoes a buckling instability, whereby
longitudinal wrinkles (also described as a zig-zag fold)
form around its midline, η >

√
24T [10] (see Fig. 1c).

Further increasing the twist leads to a faceted morphol-
ogy, also called “creased helicoid” [9] or “ribbon crys-
tal” [11] (Figs. 1a and 1b). Additionally, the helicoid
buckles in the transverse direction upon increasing the
twist for tension larger than T ∗ [12], and reaches a cylin-
drical shape (Fig. 1e). Part of these morphologies were
recently organized in a tension-twist phase diagram by
Chopin and Kudrolli [9]. We must clarify that we re-
fer to tensile loads as “large”, “moderate”, or “small”
according to their ratio with certain powers of the thick-
ness t, but even a “large tension” corresponds to charac-
teristic strains < 10−2, deeply in the Hookean regime of
material response. In this sense, the morphological tran-
sitions reported in [7–9] and here, are universal and not
material-specific.

The faceted morphology, Fig. 1a,b, has been described
as an isometric shape by solving effective equations for
the ribbon’s midline [13], or by assuming triangular facets
separated by isometric ridges [11]. However, facets are
observed over a whole region of the twist-tension phase
diagram, where the tension is small but nonzero [9],
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FIG. 1. a-e: Pictures of the different morphologies: a. Iso-
metric ridges, FIR b. Stretching ridges, FSR c. Wrinkled
helicoid, WH d. Helicoid, e. Cylinder. f. Parametrization
of the stretching ridges illustrated in b, the gray areas de-
note the ridges. g. Parametrization of the isometric ridges
illustrated in a.

suggesting that this morphology accommodates a finite
amount of stretching. Furthermore, upon increasing ten-
sion at moderate twist, facets turn into longitudinal wrin-
kles, which are clearly stretched [9] (see Fig. 1c). Moti-
vated by these observations, we focus here on the faceted
morphology: we determine experimentally its domain of
existence and propose a theoretical framework to explain
how facets separated by isometric ridges (FIR) turn into
facets separated by stretching ridges (FSR), and then to
longitudinal wrinkles (WH), by increasing the tension.

We use ribbons of length L, width W , and thickness
t under external tension T and clamped at their short
edges, which are twisted relative to each other by a pre-
scribed angle Θ. Our ribbons are composed of polyethy-
lene terephthalate PET (Young modulus E ' 3 GPa).
To simplify the discussion, we assume the Poisson ra-
tio ν = 0 (the numerical coefficients may depend on the
Poisson ratio, but the qualitative results, including the
transverse buckling instability, do not [12]). We use W
as a unit of length, and the stretching modulus Y = tE
as a unit of in-plane stress (i.e., W =Y = 1), and intro-
duce the twist per unit ribbon length η=ΘW/L, and the
energy per unit length U . The different observed shapes
are shown in Fig. 1 and are organized in a phase diagram
(Fig. 2), which focuses on the longitudinally buckled mor-
phologies and complements the one reported in [9].

Our experimental “trajectory” is depicted by the gray
lines in Fig. 2. To avoid hysteresis, the tension at each
segment is either constant or increases. We start at a very
small tension and zero twist, and progressively increase

FIG. 2. Phase diagram of a PET ribbon with t ' 0.012 and
L ' 18. The solid lines correspond to the co-existence lines
(see text). The gray lines with arrows represent the exper-
imental trajectory. T ∗ and η∗ corresponds to the helicoid-
cylinder transition at fixed length [9].

the twist. Once the chosen twist angle is attained, the
tension is increased progressively. First, the ribbon takes
a helicoidal shape (Fig. 1d). As η is increased further,
the centerline of the helicoid is under compression (η >√

24T ). A linear stability analysis shows that buckling
occurs when η` '

√
24T + 10t, forming first wrinkled

helicoids [7–10, 12]. The prediction for the critical twist
is compared to our experimental results in Fig. 3, and
shown in the phase diagram Fig. 2 (red line).

Facets separated by isometric ridges (FIR). In-
creasing the twist beyond the buckling threshold, at fixed
small tension, we observe a shape resembling facets sepa-
rated by rounded cylindrical ridges (see Fig. 1a). We fol-
low Ref. [11] and model it with flat triangular facets sepa-
rated by cylindrical ridges. Such a shape is parametrized
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by the two angles θ and φ, formed, respectively, between
the ridges and the ribbon’s midline, and between adjacent
facets (Fig. 1b and 1g), and by the radius of curvature of
the ridges, Rc. In contrast to Ref. [11], we find θ and Rc

by energy minimization.

We evaluate the energy using the general framework
of asymptotic isometries [12], which is valid for physi-
cally admissible states in the doubly-asymptotic limit of
vanishing tension T and thickness t. The energy of such
states can be approximated by the sum of a tensile work
and an elastic energy U el, both of which vanish in the
limit t, T → 0:

U = U el + χT, (1)

This formalism allows to compute both U el and χ from
geometrical and mechanical considerations, yielding ex-
pressions that have no explicit dependence on T and can
be formally evaluated at T = 0. We can thus make
a tension-independent construction by using parameters
with geometrical meaning (θ, φ,Rc), whose actual depen-
dence on T is found when minimizing the whole energy,
Eq. (1). Notice that the (unwrinkled) helicoid, for in-
stance, is not an asymptotic isometry of the ribbon, since
its elastic energy is proportional to η4 and does not vanish
as t, T → 0 [12]. More generally, in the asymptotic limit
t → 0, the AI framework is valid only if the ratio η2/T ,
between the twisted-induced stress η2, and the exerted
tension T , is sufficiently large. Since here η2/T <∼ 100,
we cannot expect a perfect quantitative agreement of the
results obtained in this framework with the experiments.
We will use this framework not only for the FIR but also
for the other shapes obtained upon increasing the ten-
sion. A similar approach has been used in other studies
of sheets (or shells) on which a Gaussian curvature is
imposed in the presence of small tension [14–16].

The twist η(θ, φ,Rc) and contraction χ(θ, φ,Rc) of a
FIR can be obtained from geometrical arguments (see
Ref. [11] and SM [17]). Upon expansion for small η and
Rc, we obtain:

χFIR =
η2

8
+

η3Rc

sin(2θ)
+

[
1

48 sin(θ)2
− 5

384

]
η4 +O(η5Rc).

(2)

The bending energy of a single ridge is given by
ur ∼ t2η/[Rc sin(θ)2] (using that φ ' η/ sin(θ) + O(η3)
[17]). Assuming a small width of the ridge compared to
the wavelength wr � λ, there are N/L ' 1/λ = tan(θ)
ridges per unit ribbon length, and the elastic energy per
unit ribbon length becomes

U el
FIR ∼

t2η

Rc sin(2θ)
. (3)

Minimizing the global energy U el
FIR + χFIRT (keeping
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FIG. 4. Evolution of the measured size of the facets λ/λmax

(filled symbols) for different PET ribbons (λmax ' 1.3, t =
0.012, η = 0.37). The red lines corresponds to the theoretical
λ(T ) curves for FIR and FSR.

terms up to the order η3 in the contraction) yields:

θ = π/4, λ = 1, Rc ∼ t/(η
√
T ), (4)

UFIR ∼ tη2
√
T + η2T +O(η4). (5)

Notably, the independence of the wavelength λ on ten-
sion indicates the robust, geometrical nature of the FIR
shape, despite the nontrivial dependence of its energy
on the tensile load T . In hindsight, this robustness ex-
plains the validity of the purely geometric approach of
Refs. [11, 13] for describing the general structure of the
FIR. In Fig. 4, we test the prediction λ = 1 by vary-
ing the tension T at constant η. Only the low-T regime,
where λ is constant, exhibits the FIR. The independence
of λ on T is in agreement with the theory, despite a slight
discrepancy between the observed and predicted values
of the wavelength that may be attributed to the finite
size of the ribbon (L ' 15), and to the global rearrange-
ment needed to adjust the wavelength. We also note
that a similar scaling of Rc with t and T was obtained
in Ref. [6] for a completely different system, namely the
width of a pulling flap in an isometric configuration. Fi-
nally, inspection of Eq. (5) shows that the tensile work
and elastic energy are balanced only for T ∼ t2. There-
fore, for FIR at very small tension (T � t2), the work
done by the torque upon twisting the ribbon is stored
efficiently as bending energy in the ridges, whereas ob-
servation of FIR for larger tension (T � t2) implies that
the twister transmits its work to the puller and the rib-
bon becomes a “bad capacitor” of energy.
Facets separated by stretching ridges (FSR).

Upon increasing the tension, the radius of curvature of
the ridges decreases, until the ridges pinch along the rib-
bon’s long edges (Fig. 1b). From visual inspection and
the study of pulling flaps [6], we hypothesize that the
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ribbon’s shape consists of facets separated by stretching
ridges (FSR).

For the FSR, the contraction χFSR can be directly eval-
uated by considering Rc � η [18], retaining only the η2

and η4 terms of Eq. (2). The elastic energy of a sin-

gle stretching ridge is given by ur ∼ t5/3`
1/3
r φ7/3, where

`r = 1/ sin(θ) is the length of a ridge [19, 20]. Using the
above geometric relationships between φ, λ, θ and η, we
deduce that the elastic energy per unit ribbon length is:

U el
FSR ∼

t5/3η7/3

sin(θ)5/3 cos(θ)
. (6)

Again, the total energy U el
FSR + χFSRT should

be minimized. The angle θ is the solution of
8(3 tan(θ)2 − 5) sin(θ)1/3/ cos θ = (η/t)5/3T . Interest-
ingly, a physical solution only exists for θ ≥ θc =
arctan(

√
5/3) which determines the size of facets at

vanishing tension, λ =
√

3/5 ' 0.78. For small ten-
sion, the wavelength slightly decreases with tension as
λ ' 0.78 − 6.4 10−3 (η/t)5/3T . The energy of the FSR
ribbon at small tension becomes,

UFSR ∼ t5/3η7/3 + η2T +O(η4). (7)

For isometric ridges (FIR), increasing the tension de-
creases the radius of curvature, Rc, of the ridges, Eq. (4),
thus increasing the elastic energy of the ribbon. At some
critical value of the tension, it becomes energetically
favourable to switch to stretching ridges (FSR) which
enable saving some bending energy. Comparing the total
energy of both faceted shapes, Eqs. (5) and (7), we find
that the FSR appears for tensions above

TFIR−FSR ∼ t4/3η2/3. (8)

This prediction is shown in the phase diagram, Fig. 2,
in good agreement with our experimental observations.
This scaling can also be obtained through a direct com-
parison of the widths of isometric, ηRc ∼ t/

√
T , and

stretching, (t/η)1/3 ridges. We note that the predicted
dependence of the tension in t is similar to the transition
force found in [6] between isometric and stretching ridges
for pulling flaps. Figure 4 provides a significant sup-
port for the theoretical prediction of a sharp transition
of the wavelength λ, from a tension-independent plateau
in a low-T regime (FIR), to a tension-dependent branch
(FSR). Another recent work [21] also found a sharp tran-
sition of the facet’s size upon increasing tension.

In the FSR regime, the evolution of the wavelength
as a function of the tension can be obtained numerically
up to an unknown numerical factor multiplying T (see
Fig. 4). To determine the asymptotic behavior of the
wavelength λ at large tension, we expand the two terms
in the energy in λ ' (π/2)− θ:

U el
FSR + χFSRT ∼

t5/3η7/3

λ
+ Tη2

[
1 + η2

(
1 + λ2

)]
, (9)

whose minimization leads to λ ∼ (t/η)5/9T−1/3. This re-
lation is consistent with the general trend for the wave-
length. Inserting the wavelength expression in Eq. (9)
yields the total energy of the FSR ribbon for large ten-
sions, i.e. when the angle θ is close to π/2,

UT
FSR ∼ t10/9η26/9T 1/3 + Tη2. (10)

The FSR description assumes that the width of the
ridges, which is given by wr ∼ (t/η)1/3, remains small
compared to the size of the facets. This assumption holds
as long as T < (t/η)2/3.
Wrinkled helicoid (WH). Turning now to higher

tension values, it is natural to ask how the FSR state
(Fig. 1b) transforms into the wrinkled helicoid (Fig. 1c),
observed for tensions slightly smaller than the fixed rib-
bon length limit, T = η2/24 (see Fig. 2) [22]. For
T < η2/24, the stress field within a twisted ribbon can
be divided into three parts. The central part of the heli-
coid |r| < rwr is under compression, while the two outer
parts (rwr < |r| < 1/2) remain stretched. A basic de-
scription of the wrinkled helicoid state has been devel-
oped in [12], using a far-from-threshold theory, whereby
the inner zone around the helicoid’s midline is decorated
with longitudinal wrinkles that fully relax compression
while the two outer strips are stretched. The width 2rwr

of the wrinkled zone is determined by the ratio T/η2,
vanishing for T/η2 → 1/24 and close to 1 at asymptotic
isometry, where T/η2 → 0. In this limit, the wrinkled
helicoid provides a remarkable example of a state that
is arbitrarily close to isometric deformation of the rib-
bon, although the Gaussian curvature K of the envelope
(helicoidal) shape is finite (−η2). This type of “non-
developable isometry” [23] is strictly different from a
piecewise-developable shape (e.g. the faceted shapes dis-
cussed above), for which K = 0 almost everywhere, echo-
ing ideas from the mathematical literature [24]. While a
full characterization of the wrinkled helicoid is beyond
the scope of the current work, we use below a scaling
analysis to explore the possibility of a transition from
FSR to a wrinkled helicoid at the asymptotic isometry
limit t, T → 0. Note that this is obviously a crude ap-
proximation of the shape observed in Fig. 1b, where the
wrinkles do not reach the edges.

Assuming that the ribbon does approach a fully wrin-
kled helicoid shape at T � η2, the contraction χWH can
be computed by assuming that the edges, |r| = rwr ≈
1/2, are neither wrinkled nor stretched. A simple calcu-
lation yields

χWH = 1−
√

1− η2

4
=
η2

8
+

η4

128
+O(η6). (11)

Note that this expression corresponds to the contraction
of the facets given by Eq. (2), in the limit Rc → 0,
θ → π/2. In order to evaluate the elastic energy, we must
determine the amplitude A and wavelength λ of the wrin-
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kles. Since the wrinkles completely relax the compres-
sion, we obtain the “slaving condition”: A/λ ∼ η [12].
The elastic energy is governed by stretching in the trans-
verse direction, Ustr ∼ A4, and bending in the longitu-
dinal direction, Ubend ∼ t2A2/λ4. Minimizing the total
energy with respect to λ yields:

λ ∼ (t/η)1/3, UWH ∼ t4/3η8/3 + Tη2. (12)

Unsurprisingly, the wavelength scales with the thickness
similarly to the width of the stretching ridge [19], reflect-
ing the same type of energy balance used in both cases.
Comparing the energy estimates for both morphologies,
Eqs. (10) and (12), we see that the WH is energetically
favorable for tensions above

TFSR−WH ∼ (t/η)2/3. (13)

Remarkably, this occurs when the size of the facets be-
comes comparable to the width of a ridge in the FSR.
Note that this value is much larger than the tension where
FSR appears, see Eq. (8), which guarantees a large do-
main of existence for the FSR. However, the predicted
value of the transition TFSR−WH is larger than the criti-
cal tension T ∗ ∼ t (see Fig. 2) where transverse buckling
instability occurs [12], meaning that the WH cannot ex-
ist in the asymptotic isometry limit. The experimental
data shows a transition at T/η2 ' 1/40 (Fig. 2), rather
close to the onset of longitudinal buckling, T/η2 < 1/24.
We are thus far from the asymptotic isometry regime
(T/η2 → 0).

In conclusions, we employed here the framework of
asymptotically isometric shapes, together with an analy-
sis of the energy of elastic ridges, to classify the various
types of longitudinally buckled morphologies attained by
a twisted ribbon at very small thickness and tensile load:
facets separated by isometric or stretching ridges (FIR,
FSR), and wrinkled helicoid. We hope that the rich
plethora of distinct patterns and transitions, will lead
to further studies of this system as a model for the spon-
taneous emergence of morphological complexity in elastic
sheets under geometric constraints.

The authors thank J. Chopin and M. Adda-Bedia for
fruitful discussions, and J. Bohr and S. Markvorsen for
helpful clarifications about their ribbon crystal compu-
tations. S. Cuvelier is acknowledged for technical assis-
tance. This work was partially supported by a grant from
the Belgian CUD program, and by NSF CARRER award
DMR 11-51780 (BD).

∗ Present address: Université libre de Bruxelles (ULB),
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