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We use a reservoir engineering technique based on two-tone driving to generate and stabilize
a quantum squeezed state of a micron-scale mechanical oscillator in a microwave optomechanical
system. Using an independent backaction evading measurement to directly quantify the squeezing,
we observe 4.7 ± 0.9 dB of squeezing below the zero-point level, surpassing the 3 dB limit of stan-
dard parametric squeezing techniques. Our measurements also reveal evidence for an additional
mechanical parametric effect. The interplay between this effect and the optomechanical interaction
enhances the amount of squeezing obtained in the experiment.

Generating nonclassical states of a massive object has
been a subject of considerable interest. It offers a route
toward fundamental tests of quantum mechanics in an
unexplored regime [1]. One of the most important and
elementary quantum states of an oscillator is a squeezed
state [2], which is a minimum uncertainty state has a
quadrature which is smaller than the zero-point level.
Such states have long been discussed in the context of
gravitational wave detection to improve the measurement
sensitivity [3–5]. It is well known that a coherent para-
metric drive can be used to squeeze mechanical fluctu-
ations [6, 7], which is essentially equivalent to the tech-
nique first used to squeeze ground-state optical fields [8].
However, the maximum steady-state squeezing achieved
by this method is limited to 3 dB due to the onset of
parametric instability. Therefore, it is in principle impos-
sible to have a steady state where the mechanical motion
is squeezed below one half of the zero-point level using
only parametric driving. These limitations may be over-
come by combining continuous quantum measurement
and feedback [9–12], but it would substantially increase
the experimental complexity.

Another method to generate robust quantum state is
quantum reservoir engineering [13], which has been used
to generate quantum squeezed states and entanglement
with trapped ions [14, 15] and superconducting qubits
[16]. It can also applied to optomechanical system to
generate strong steady-state squeezing without quantum-
limited measurement and feedback [17]. By modulating
the optomechanical coupling with two imbalanced clas-
sical drive tones, the driven cavity acts effectively as
a squeezed reservoir. When the engineered dissipation
from the cavity dominates the dissipation from the en-
vironment, the mechanical resonator relaxes to a steady
squeezed state. This technique has been applied recently
to generate quantum squeezed states of macroscopic me-
chanical resonators [18–20].

In addition to being a tool for state preparation, op-

tomechanics also provides a means to probe the quantum
behavior of macroscopic objects [21–23]. In particular, a
backaction evading (BAE) measurement [10, 20, 24–27]
of a single motional quadrature can be implemented in an
optomechanical system. If the drive tones that modulate
the coupling are balanced, a continuous quantum nonde-
molition (QND) measurement of the mechanical quadra-
ture can be made. This technique can be used to fully
reconstruct the quantum state of the mechanical motion.

In this work, we combine reservoir engineering and
backaction evading measurement with a microwave op-
tomechanical system to perform continuous QND mea-
surement of a quantum squeezed state. Among the
previous three squeezing experiments [18–20], only [20]
demonstrated direct detection, performed using a two-
cavity optomechanical system; here we implement both
reservoir engineering and BAE measurement simultane-
ously within a simple single-cavity setup. In addition to
the optomechanical interaction, a mechanical paramet-
ric effect is observed. Contrary to previous works, where
the mechanical parametric effect produced parametric in-
stability that limited the precision of the BAE measure-
ment [26, 28, 29], the interplay between the parametric
drive and the engineered dissipation enhances the me-
chanical squeezing. By directly measuring the mechani-
cal quadrature variances with the BAE measurement, we
demonstrate motional quantum squeezing with squeezed
quadrature variance 〈∆X2

1 〉 = 0.34 ± 0.07x2
zp, 4.7 ± 0.9

dB below the zero-point level. This exceeds what is pos-
sible using only parametric driving, even if one starts in
the quantum ground state. This is the first experiment
to demonstrate more than 3 dB quantum squeezing in a
macroscopic mechanical system.

The mechanical oscillator in this work is a 100 nm
thick, 40×40µm2 aluminum membrane, with fundamen-
tal resonance frequency ωm = 2π×5.8 MHz and mechan-
ical linewidth Γm = 2π×8 Hz at 10 mK. It is capacitively
coupled to a lumped-element superconducting microwave
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resonator with resonance frequency ωc = 2π×6.083 GHz
and damping rate κ = 2π × 330 kHz (Fig. 1a). The
mechanical motion couples to the resonance frequency
of the microwave resonator through the modulation of
the capacitance, with an optomechanical coupling rate

g0 = dωc

dx xzp = 2π × 130 Hz, where xzp =
√

~
2mωm

= 1.8

fm is the amplitude of the zero-point fluctuation of the
mechanical oscillator with mass m = 432 pg. The system
is described by the Hamiltonian

Ĥ = ~ωcâ†â+ ~ωmb̂†b̂− ~g0â
†â
(
b̂+ b̂†

)

+ i~
√
κin(α∗(t)â− α(t)â†) + Ĥdiss, (1)

where â
(
â†
)

is the annihilation (creation) operator of

the intra-cavity field, b̂
(
b̂†
)

is the mechanical phonon

annihilation (creation) operator, κin is the coupling rate
of the input coupler, and α(t) is the external driving field.
The term Ĥdiss accounts for dissipation.

To squeeze the mechanical motion, we drive the cavity
with a pair of pump tones at ωc ∓ ωm with intracavity
field [17]

ᾱsqz(t) = (ᾱ−e
iωmt + ᾱ+e

−iωmt)e−iωct, (2)

which is represented by the red and blue arrows in
Fig. 1b. Linearizing the cavity dynamics in the stan-
dard way, the pumps couple the microwave resonator to
the Bogoliubov mode of the mechanical motion with the
Hamiltonian

Ĥsqz = −~G(d̂†β̂ + d̂β̂†), (3)

where d̂ is the fluctuating part of the cavity field â,
and β̂ = b̂ cosh r + b̂† sinh r is the Bogoliubov-mode an-
nihilation operator whose ground state is a squeezed
state with squeezing parameter r = tanh−1(G+/G−).

G =
√
G2
− −G2

+ is the coupling rate between the Bo-

goliubov mode and the cavity. G∓ = g0

√
n∓p are the en-

hanced optomechanical coupling rates, and n∓p = |ᾱ∓|2
are the intracavity pump photon numbers correspond-
ing to the squeezing pumps. The beam-splitter Hamilto-
nian in Eq. (3) enables us to cool the Bogoliubov-mode
into its ground state, producing a stationary mechanical
squeezed state with quadrature variances

〈∆X̂2
1,2〉 = x2

zp

{
Γm
Γeff

(
2nthm + 1

)
+

Γ∓opt

Γeff

(
2nthc + 1

)}
, (4)

where Γeff = Γm + 4G2/κ is the effective mechanical
linewidth and Γ∓opt = 4(G− ∓G+)2/κ parameterizes the
phase-dependent driving of the mechanics by cavity fluc-
tuations.

To extract the mechanical quadrature variance, we
measure the normalized noise spectra of the cavity reso-
nance (the lower inset in Fig. 1f(g)) and the mechanical

sideband (the upper inset in Fig. 1f(g)). By fitting the
normalized spectra with the optomechanical model [30],
we can extract the cavity occupation nth

c and the phonon
bath occupation nth

m . Together with the calibrations of
the enhanced optomechanical coupling rate G±, we can
calculate the quadrature variances with Eq. (4) [17, 18].

Fig. 1c shows the quadrature variances with various in-
tracavity pump photon ratio n+

p /n
−
p . We start by squeez-

ing the mechanical motion with total intracavity pump
photon number ntot

p = n−p + n+
p = 1.35 × 104 and pump

photon ratio n+
p /n

−
p = 0.5. This pump configuration

generates a mechanical squeezed state with the squeezed
quadrature variance 〈∆X̂2

1 〉 = 1.54±0.59x2
zp and the anti-

squeezed quadrature variance 〈∆X̂2
2 〉 = 13.8 ± 1.4x2

zp,
indicated by the solid red circle and square in Fig. 1c.
The corresponding normalized output spectra and the fits
from the two-tone optomechanical model [17] are shown
in Fig. 1f. To further squeeze the mechanical motion,
we can increase the total pump photon number. The
blue circles (squares) in Fig. 1c are the squeezed (anti-
squeezed) quadrature variances at total intracavity pump
photon number ntot

p = 1.85 × 105. The solid (dashed)
blue curves are the predictions from Eq. (4) with con-
stant cavity and mechanical occupations extracted from
the output spectrum at n+

p = 0; they agree with the
data at low pump photon ratio. At large pump photon
ratio, the cavity bath starts to heat up (Fig. 1d), which
increases the mechanical quadrature variances. The or-
ange curves in Fig. 1c are the predictions from Eq. (4)
including the cavity heating effect extracted from the
experiment (orange line in Fig. 1d). With the heating
effect, the minimum quadrature variance is achieved at
n+
p /n

−
p = 0.43 with 〈∆X̂2

1 〉 = 0.56 ± 0.02x2
zp (the solid

blue circle in Fig. 1d), 2.5± 0.2 dB below the zero-point
level. The corresponding normalized output spectra and
fits are shown in Fig. 1g.

While inferring the level of squeezing from the cav-
ity output spectrum is convenient, it would be preferable
to have a more direct method that does not rely on as-
sumptions about the mechanical dynamics. This can be
achieved in our system without needing to introduce an
additional cavity resonance: we continue to use the cavity
density of states near resonances to generate mechanical
squeezing, but now use the density of states away from
resonances to make an independent, backaction-evading
measurement of a single mechanical quadrature. In this
way, our single cavity effectively plays the role of two:
it both generates squeezing, and permits an independent
detection of the squeezing.

To directly measure a single mechanical quadrature, in
addition to the squeezing pumps, we introduce another
pair of weak backaction evading (BAE) probes (the pur-
ple arrows in Fig. 1b) at ωc ∓ ωm − ∆ with intracavity
field [18, 27]

ᾱBAE(t) = 2ᾱ cos(ωmt+ φ)e−i(ωc−∆)t, (5)
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where φ is the relative phase between the BAE probes
and the squeezing pumps. For a sideband-resolved sys-
tem (ωm � κ), the modulation of the BAE probes
exclusively couples the mechanical quadrature X̂φ =

cosφX̂1 − sinφX̂2 to the microwave resonance with the
interaction

ĤI = −~G(d̂†e−i∆t + d̂ei∆t)
X̂φ

xzp
, (6)

where G = g0
√
np is the enhanced optomechanical cou-

pling rate and np = |ᾱ|2 is the intracavity pump photon

number corresponding to the BAE probes. Since X̂φ is
a constant of motion of the system, the interaction (6)
enables a continuous QND measurement of the the me-
chanical quadrature. By sweeping the probe phase φ,
we can perform tomography of the mechanical quantum
state (Fig. 2a). In order to ensure no interference be-
tween the sidebands of the squeezing pumps and the BAE
probes, we detune the BAE sidebands from the cavity
resonance by ∆ = 2π×160kHz� Γeff. The power of the
BAE probes are set about 10 dB weaker than the power
of the squeezing pumps to avoid extra heating. In the
experiment, the motional sideband spectrum of the BAE
probes is measured, from which we can extract the me-
chanical quadrature variance and linewidth. In the fol-
lowing, we will perform a BAE measurement to directly
characterize the weakly squeezed state corresponding to
the spectrum Fig. 1f and the strong squeezed state cor-
responding to the spectrum Fig. 1g.

Fig. 2b shows the mechanical quadrature variance as
a function of the probe phase φ. The red circles are
the quadrature variances of the weakly squeezed state
measured with the BAE technique. The red curve is
the quadrature variance inferred from the corresponding
output spectrum (Fig. 1f). In this case, the results from
the BAE measurement are in good agreement with the
results inferred from the output spectra. Similarly, the
blue circles are the quadrature variances of the strong
squeezed state measured with the BAE technique. The
blue curve is the quadrature variance inferred from the
corresponding output spectra (Fig. 1g). The mini-
mum quadrature variance is achieved at φ = 0◦ with
〈∆X̂2

φ〉 = 0.34 ± 0.07x2
zp, 4.7 ± 0.9 dB below the zero-

point level. This is lower than the quadrature variance
inferred from the output spectrum, implying that there
is additional dynamics at play (beyond the ideal optome-
chanical interaction).

The enhanced squeezing observed in the BAE mea-
surement suggests an additional squeezing mechanism
beyond the dissipative mechanism discussed above; an
obvious candidate is direct parametric driving of the me-
chanics. The presence of such driving is further corrob-
orated by our observation of a phase dependence of the
quadrature linewidth in the BAE measurement (Fig. 2c).
Similar induced mechanical parametric driving has been

observed in other BAE measurements; they can arise
via a number of mechanisms, including thermal effects
as well as higher nonlinearities [28, 29]. To understand
the effects of this mechanical parametric driving, we phe-
nomenologically add the mechanical parametric interac-
tion to our otherwise ideal optomechanical model [30]:

Ĥpara = −~λ(eiψ b̂2 + e−iψ b̂†2), (7)

where λ is the amplitude of the parametric interaction
and ψ is the relative phase between the parametric drive
and the squeezing pumps.

We fit the observed phase-dependent quadrature
linewidth to our model, thus extracting the amplitude
and phase of the parametric drive. [30]. By assuming
the phase of the parametric drive ψ follows the phase of
the BAE probe (i.e. ψ = φ+ ψ0, where ψ0 is a constant
phase shift), the model captures the observed phase de-
pendence behavior of the quadrature linewidth, as shown
by the dashed curves in Fig. 2c. Surprisingly, if one in-
stead assumes that the parametric driving is a result of
the main squeezing tones (i.e. take ψ a constant inde-
pendent of φ), one cannot capture the observed phase
dependence of the quadrature linewidth [30]. These re-
sults suggest that the parametric drive is induced by the
BAE probes.

The dashed curves in Fig. 2b are the predicted quadra-
ture variance including the mechanical parametric effect.
The model suggests that the combination of the reservoir
engineering with the mechanical parametric drive pro-
vide extra squeezing. However, the model doesn’t fully
capture the observed quadrature variance in the BAE
measurement. The deviation may be due to the com-
plicated heating effects associated with the underlaying
nonlinearities [28, 29] that cause the spurious mechani-
cal parametric drive. We stress that our treatment of the
spurious mechanical parametric drive is phenomenologi-
cal; we do not know the precise microscopic mechanism
which causes this driving. Nonetheless, it allows us to ex-
plain both surprising features of the BAE measurements
(the observed phase-dependent mechanical quadrature
linewidth, and the enhanced squeezing), and provide a
direction to engineer the parametric drive to increase the
squeezing [30].

In conclusion, we combine reservoir engineering and
backaction evading measurement in a microwave optome-
chanical system to demonstrate a continuous QND mea-
surement of mechanical squeezed states. A spurious me-
chanical parametric effect is observed and provide addi-
tional squeezing. Together with the spurious mechanical
parametric drive, the reservoir engineering technique pro-
duce more than 3 dB squeezing below the zero-point level.
The present scheme can be applied to generate and char-
acterize more complicated quantum states by carefully
engineering the nonlinear interaction [31, 32]. The abil-
ity to generate and measure a strong quantum squeezed
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state of a macroscopic mechanical object would be use-
ful for ultra-sensitive detection [3], quantum information
processing [33], as well as fundamental study of quantum
decoherence [34, 35].
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FIG. 1. (a) Optical micrograph of the device. The gray region is aluminum, the blue region is silicon. The square at the
center is a parallel plate capacitor which is coupled to a spiral inductor to form a microwave resonator. The top gate of the
capacitor is a compliant membrane whose fundamental motion is being studied. (b) Schematic of the pumps (red and blue
arrows) and probes (purple arrows) relative to the cavity resonance. The inset shows the schematic of the BAE probe sideband
spectrum. (c) The squeezed quadrature variances (circles) and anti-squeezed quadrature variances (squares) inferred from the
output spectra. The red (blue) symbols represent the squeezed states achieved at ntot

p = 1.35 × 104 (ntot
p = 1.85 × 105). The

blue shaded region indicates sub-zero point squeezing. The blue curves are the predictions from Eq. (4) with constant cavity
and mechanical occupations at n+

p /n
−
p = 0. The orange curves are the predictions from Eq. (4) including cavity heating effect

extracted from the experiment. (d) The cavity occupation nth
c extracted from the output spectrums, the orange line is a linear

fit of the pump ratio dependent heating. (e) The phonon bath heating rate Γmn
th
m extracted from the output spectrums. (f)

(g) The output spectra normalized by the transmitted power of the red-detuned pump. The upper inset is the normalized noise
spectrum of the mechanical sideband, the lower inset is the noise spectrum of the cavity resonance. (f) The normalized output
spectra correspond to the solid red circle in Fig. 1c. (g) The normalized output spectra correspond to the solid blue circle in
Fig. 1c.
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FIG. 2. (a) Schematic of dissipative mechanical squeezing. The gray circle represents the initial thermal state in phase space.
The engineered reservoir generates phase dependent dissipation that relaxes the mechanics into a squeezed state, which is
represented by the blue ellipse. The gray dashed circle represents the zero-point level. (b) Mechanical quadrature variance as a
function of probe phase. The blue shaded region indicates sub-zero point squeezing. The red (blue) circles are the quadrature
variances of the weakly (strong) squeezed state as measured using the BAE technique. The solid curves are the quadrature
variances inferred from the corresponding output spectra assuming no mechanical parametric drive. The dashed curves are the
predictions of an optomechanical model including the mechanical parametric effect. The insets are the mechanical quadrature
spectra of the strong squeezed state with phase φ at −70◦ (red), −50◦ (green), −20◦ (yellow), 0◦ (blue). The gray Lorentzian in
the lower inset represents the spectrum with quadrature variance equal to half of the zero-point fluctuation (the 3 dB limit). (c)
Mechanical quadrature linewidth as a function of probe phase. The red (blue) circles are the measured mechanical quadrature
linewidth of the weakly (strong) squeezed state. The solid lines are the theoretical predictions from the ideal optomechanical
model. The dashed curves are the fit with the optomechanical model including the mechanical parametric interaction.
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